Cargando…

APPLIED MACHINE LEARNING AND HIGH PERFORMANCE COMPUTING ON AWS /

Build, train, and deploy large machine learning models at scale in various domains such as computational fluid dynamics, genomics, autonomous vehicles, and numerical optimization using Amazon SageMaker Key Features Understand the need for high-performance computing (HPC) Build, train, and deploy lar...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Sabir, Farooq (Autor), Subramanian, Shreyas (Autor), Potgieter, Trenton (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Place of publication not identified] PACKT Publishing Limited, 2022.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1356944500
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 230110s2022 xx o 000 0 eng d
040 |a YDX  |b eng  |c YDX  |d ORMDA  |d OCLCF  |d IEEEE 
020 |a 9781803244440  |q (electronic bk.) 
020 |a 1803244445  |q (electronic bk.) 
020 |z 1803237015 
020 |z 9781803237015 
029 1 |a AU@  |b 000073289756 
029 1 |a AU@  |b 000073296557 
035 |a (OCoLC)1356944500 
037 |a 9781803237015  |b O'Reilly Media 
037 |a 10162248  |b IEEE 
050 4 |a TK5105.88813 
082 0 4 |a 006.31  |2 23/eng/20230110 
049 |a UAMI 
245 0 0 |a APPLIED MACHINE LEARNING AND HIGH PERFORMANCE COMPUTING ON AWS /  |c Mani Khanuja, Farooq Sabir, Shreyas Subramanian, Trenton Potgieter. 
260 |a [Place of publication not identified]  |b PACKT Publishing Limited,  |c 2022. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Build, train, and deploy large machine learning models at scale in various domains such as computational fluid dynamics, genomics, autonomous vehicles, and numerical optimization using Amazon SageMaker Key Features Understand the need for high-performance computing (HPC) Build, train, and deploy large ML models with billions of parameters using Amazon SageMaker Learn best practices and architectures for implementing ML at scale using HPC Book DescriptionMachine learning (ML) and high-performance computing (HPC) on AWS run compute-intensive workloads across industries and emerging applications. Its use cases can be linked to various verticals, such as computational fluid dynamics (CFD), genomics, and autonomous vehicles. This book provides end-to-end guidance, starting with HPC concepts for storage and networking. It then progresses to working examples on how to process large datasets using SageMaker Studio and EMR. Next, you’ll learn how to build, train, and deploy large models using distributed training. Later chapters also guide you through deploying models to edge devices using SageMaker and IoT Greengrass, and performance optimization of ML models, for low latency use cases. By the end of this book, you’ll be able to build, train, and deploy your own large-scale ML application, using HPC on AWS, following industry best practices and addressing the key pain points encountered in the application life cycle. What you will learn Explore data management, storage, and fast networking for HPC applications Focus on the analysis and visualization of a large volume of data using Spark Train visual transformer models using SageMaker distributed training Deploy and manage ML models at scale on the cloud and at the edge Get to grips with performance optimization of ML models for low latency workloads Apply HPC to industry domains such as CFD, genomics, AV, and optimization Who this book is for The book begins with HPC concepts, however, it expects you to have prior machine learning knowledge. This book is for ML engineers and data scientists interested in learning advanced topics on using large datasets for training large models using distributed training concepts on AWS, deploying models at scale, and performance optimization for low latency use cases. Practitioners in fields such as numerical optimization, computation fluid dynamics, autonomous vehicles, and genomics, who require HPC for applying ML models to applications at scale will also find the book useful. 
505 0 |a Table of Contents High-Performance Computing Fundamentals Data Management and Transfer Compute and Networking Data Storage Data Analysis Distributed Training of Machine Learning Models Deploying Machine Learning Models at Scale Optimizing and Managing Machine Learning Models for Edge Deployment Performance Optimization for Real-Time Inference Data Visualization Computational Fluid Dynamics Genomics Autonomous Vehicles Numerical Optimization. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Amazon Web Services. 
650 0 |a Machine learning  |x Computer programs. 
650 0 |a High performance computing. 
650 0 |a Cloud computing. 
650 0 |a Web services. 
650 7 |a Cloud computing.  |2 fast  |0 (OCoLC)fst01745899 
650 7 |a High performance computing.  |2 fast  |0 (OCoLC)fst00956032 
650 7 |a Web services.  |2 fast  |0 (OCoLC)fst01173242 
700 1 |a Sabir, Farooq,  |e author. 
700 1 |a Subramanian, Shreyas,  |e author. 
700 1 |a Potgieter, Trenton,  |e author. 
776 0 8 |i Print version:  |z 1803237015  |z 9781803237015  |w (OCoLC)1347364665 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781803237015/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 304084104 
994 |a 92  |b IZTAP