Cargando…

Machine learning : random forest with Python from scratch.

Machine learning is designed to understand and build methods that 'learn' to leverage data to improve performance on a set of tasks. Machine learning algorithms are used in a plethora of applications in medicine, email filtering, speech recognition, and more, where it is challenging to dev...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : Packt Publishing, 2022.
Edición:[First edition].
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a22000007i 4500
001 OR_on1356913592
003 OCoLC
005 20231017213018.0
006 m o c
007 vz czazuu
007 cr cnannnuuuuu
008 230105s2022 xx 501 o vleng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d OCLCF  |d OCLCO 
020 |a 9781803236803  |q (electronic video) 
020 |a 1803236809  |q (electronic video) 
029 1 |a AU@  |b 000073289769 
035 |a (OCoLC)1356913592 
037 |a 9781803236803  |b O'Reilly Media 
050 4 |a Q325.5 
082 0 4 |a 006.3/1  |2 23/eng/20230105 
049 |a UAMI 
245 0 0 |a Machine learning :  |b random forest with Python from scratch. 
250 |a [First edition]. 
264 1 |a [Place of publication not identified] :  |b Packt Publishing,  |c 2022. 
300 |a 1 online resource (1 video file (8 hr., 21 min.)) :  |b sound, color. 
306 |a 082100 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
344 |a digital  |2 rdatr 
347 |a video file  |2 rdaft 
380 |a Instructional films  |2 lcgft 
511 0 |a AI Sciences, presenter. 
500 |a "Published in November 2022." 
520 |a Machine learning is designed to understand and build methods that 'learn' to leverage data to improve performance on a set of tasks. Machine learning algorithms are used in a plethora of applications in medicine, email filtering, speech recognition, and more, where it is challenging to develop conventional algorithms to perform tasks. The course begins with an introduction to machine learning concepts and explains the motivation for machine learning. The course teaches all major concepts about Python including variables, objects, strings, loops, decision-making statements, classes, and a small project to recap. You will learn to use the power of Python to train your machine and make predictions and implement the ML algorithm "Random Forest." Use NumPy with Python for array handling, Pandas data frames for Excel files, and matplotlib for data visualization. You will learn to use Random Forest with sklearn, Matplotlib for Python plotting, and SciKit-Learn for Random Forest. Upon completion, you will Implement the structure of forest, impurity, information gain, partitions, leaf nodes, and decision nodes using Python and create a complete structure for Random Forest using Python to build one tree that lets you create an entire forest. You will write an accuracy calculator function and implement Random Forest on any dataset. What You Will Learn Use Random Forest with sklearn and Matplotlib for Python plotting Use SciKit-Learn for Random Forest using the titanic dataset Learn forest structure, impurity, partition, leaf/decision nodes Create a complete Random Forest structure from scratch using Python Build one tree that adds up to create a complete forest Write accuracy calculator functions and implement them on any dataset Audience This course is for you if you want to learn how to program in Python for machine learning or want to make a predictive analysis model. This course is for someone who is an absolute beginner and has truly little or even zero ideas of machine learning or wants to learn random forest from zero to hero. About The Author AI Sciences: AI Sciences is a group of experts, PhDs, and practitioners of AI, ML, computer science, and statistics. Some of the experts work in big companies such as Amazon, Google, Facebook, Microsoft, KPMG, BCG, and IBM. They have produced a series of courses mainly dedicated to beginners and newcomers on the techniques and methods of machine learning, statistics, artificial intelligence, and data science. Initially, their objective was to help only those who wish to understand these techniques more easily and to be able to start without too much theory. Today, they also publish more complete courses for a wider audience. Their courses have had phenomenal success and have helped more than 100,000 students master AI and data science. 
588 |a Online resource; title from title details screen (O'Reilly, viewed January 5, 2023). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 6 |a Apprentissage automatique. 
650 6 |a Python (Langage de programmation) 
650 7 |a Machine learning  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
655 7 |a Instructional films  |2 fast 
655 7 |a Internet videos  |2 fast 
655 7 |a Nonfiction films  |2 fast 
655 7 |a Instructional films.  |2 lcgft 
655 7 |a Nonfiction films.  |2 lcgft 
655 7 |a Internet videos.  |2 lcgft 
655 7 |a Films de formation.  |2 rvmgf 
655 7 |a Films autres que de fiction.  |2 rvmgf 
655 7 |a Vidéos sur Internet.  |2 rvmgf 
710 2 |a AI Sciences (Firm),  |e presenter. 
710 2 |a Packt Publishing,  |e publisher. 
856 4 0 |u https://learning.oreilly.com/videos/~/9781803236803/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP