Cargando…

Reinforcement learning for finance : solve problems in finance with CNN and RNN using the TensorFlow library /

This book introduces reinforcement learning with mathematical theory and practical examples from quantitative finance using the TensorFlow library. Reinforcement Learning for Finance begins by describing methods for training neural networks. Next, it discusses CNN and RNN - two kinds of neural netwo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ahlawat, Samit (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berkeley, CA : Apress L. P., [2023]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1356574193
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 221231s2023 caua ob 001 0 eng d
040 |a EBLCP  |b eng  |e rda  |c EBLCP  |d ORMDA  |d EBLCP  |d YDX  |d GW5XE  |d OCLCF  |d OCLCO 
019 |a 1356502332 
020 |a 9781484288351  |q (electronic bk.) 
020 |a 1484288351  |q (electronic bk.) 
020 |z 1484288343 
020 |z 9781484288344 
024 7 |a 10.1007/978-1-4842-8835-1  |2 doi 
029 1 |a AU@  |b 000073291029 
029 1 |a AU@  |b 000073315045 
035 |a (OCoLC)1356574193  |z (OCoLC)1356502332 
037 |a 9781484288351  |b O'Reilly Media 
050 4 |a Q325.6  |b .A45 2023 
072 7 |a UYQM  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQM  |2 thema 
082 0 4 |a 332.0285631  |2 23/eng/20230106 
049 |a UAMI 
100 1 |a Ahlawat, Samit,  |e author. 
245 1 0 |a Reinforcement learning for finance :  |b solve problems in finance with CNN and RNN using the TensorFlow library /  |c Samit Ahlawat. 
264 1 |a Berkeley, CA :  |b Apress L. P.,  |c [2023] 
300 |a 1 online resource (435 p.) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 |a Description based upon print version of record. 
505 0 |a Intro -- Table of Contents -- About the Author -- Acknowledgments -- Preface -- Introduction -- Chapter 1: Overview -- 1.1 Methods for Training Neural Networks -- 1.2 Machine Learning in Finance -- 1.3 Structure of the Book -- Chapter 2: Introduction to TensorFlow -- 2.1 Tensors and Variables -- 2.2 Graphs, Operations, and Functions -- 2.3 Modules -- 2.4 Layers -- 2.5 Models -- 2.6 Activation Functions -- 2.7 Loss Functions -- 2.8 Metrics -- 2.9 Optimizers -- 2.10 Regularizers -- 2.11 TensorBoard -- 2.12 Dataset Manipulation -- 2.13 Gradient Tape -- Chapter 3: Convolutional Neural Networks 
505 8 |a 3.1 A Simple CNN -- 3.2 Neural Network Layers Used in CNNs -- 3.3 Output Shapes and Trainable Parameters of CNNs -- 3.4 Classifying Fashion MNIST Images -- 3.5 Identifying Technical Patterns in Security Prices -- 3.6 Using CNNs for Recognizing Handwritten Digits -- Chapter 4: Recurrent Neural Networks -- 4.1 Simple RNN Layer -- 4.2 LSTM Layer -- 4.3 GRU Layer -- 4.4 Customized RNN Layers -- 4.5 Stock Price Prediction -- 4.6 Correlation in Asset Returns -- Chapter 5: Reinforcement Learning Theory -- 5.1 Basics -- 5.2 Methods for Estimating the Markov Decision Problem 
505 8 |a 5.3 Value Estimation Methods -- 5.3.1 Dynamic Programming -- Finding the Optimal Path in a Maze -- European Call Option Valuation -- Valuation of a European Barrier Option -- 5.3.2 Generalized Policy Iteration -- Policy Improvement Theorem -- Policy Evaluation -- Policy Improvement -- 5.3.3 Monte Carlo Method -- Pricing an American Put Option -- 5.3.4 Temporal Difference (TD) Learning -- SARSA -- Valuation of an American Barrier Option -- Least Squares Temporal Difference (LSTD) -- Least Squares Policy Evaluation (LSPE) -- Least Squares Policy Iteration (LSPI) -- Q-Learning -- Double Q-Learning 
505 8 |a Eligibility Trace -- 5.3.5 Cartpole Balancing -- 5.4 Policy Learning -- 5.4.1 Policy Gradient Theorem -- 5.4.2 REINFORCE Algorithm -- 5.4.3 Policy Gradient with State-Action Value Function Approximation -- 5.4.4 Policy Learning Using Cross Entropy -- 5.5 Actor-Critic Algorithms -- 5.5.1 Stochastic Gradient-Based Actor-Critic Algorithms -- 5.5.2 Building a Trading Strategy -- 5.5.3 Natural Actor-Critic Algorithms -- 5.5.4 Cross Entropy-Based Actor-Critic Algorithms -- Chapter 6: Recent RL Algorithms -- 6.1 Double Deep Q-Network: DDQN -- 6.2 Balancing a Cartpole Using DDQN 
505 8 |a 6.3 Dueling Double Deep Q-Network -- 6.4 Noisy Networks -- 6.5 Deterministic Policy Gradient -- 6.5.1 Off-Policy Actor-Critic Algorithm -- 6.5.2 Deterministic Policy Gradient Theorem -- 6.6 Trust Region Policy Optimization: TRPO -- 6.7 Natural Actor-Critic Algorithm: NAC -- 6.8 Proximal Policy Optimization: PPO -- 6.9 Deep Deterministic Policy Gradient: DDPG -- 6.10 D4PG -- 6.11 TD3PG -- 6.12 Soft Actor-Critic: SAC -- 6.13 Variational Autoencoder -- 6.14 VAE for Dimensionality Reduction -- 6.15 Generative Adversarial Networks -- Bibliography -- Index 
520 |a This book introduces reinforcement learning with mathematical theory and practical examples from quantitative finance using the TensorFlow library. Reinforcement Learning for Finance begins by describing methods for training neural networks. Next, it discusses CNN and RNN - two kinds of neural networks used as deep learning networks in reinforcement learning. Further, the book dives into reinforcement learning theory, explaining the Markov decision process, value function, policy, and policy gradients, with their mathematical formulations and learning algorithms. It covers recent reinforcement learning algorithms from double deep-Q networks to twin-delayed deep deterministic policy gradients and generative adversarial networks with examples using the TensorFlow Python library. It also serves as a quick hands-on guide to TensorFlow programming, covering concepts ranging from variables and graphs to automatic differentiation, layers, models, and loss functions. After completing this book, you will understand reinforcement learning with deep q and generative adversarial networks using the TensorFlow library. What You Will Learn Understand the fundamentals of reinforcement learning Apply reinforcement learning programming techniques to solve quantitative-finance problems Gain insight into convolutional neural networks and recurrent neural networks Understand the Markov decision process Who This Book Is For Data Scientists, Machine Learning engineers and Python programmers who want to apply reinforcement learning to solve problems. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Finance  |x Mathematical models  |x Data processing. 
650 0 |a Reinforcement learning. 
650 0 |a Python (Computer program language) 
650 6 |a Finances  |x Modèles mathématiques  |x Informatique. 
650 6 |a Apprentissage par renforcement (Intelligence artificielle) 
650 6 |a Python (Langage de programmation) 
650 7 |a Finance  |x Mathematical models  |x Data processing  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
650 7 |a Reinforcement learning  |2 fast 
776 0 8 |i Print version:  |a Ahlawat, Samit  |t Reinforcement Learning for Finance  |d Berkeley, CA : Apress L. P.,c2023  |z 9781484288344 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484288351/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7164636 
938 |a YBP Library Services  |b YANK  |n 19009152 
994 |a 92  |b IZTAP