Cargando…

Time Series Algorithms Recipes : Implement Machine Learning and Deep Learning Techniques with Python /

This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing. It begins with the fundamentals of time series forecasting using statistical modeling methods lik...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kulkarni, Akshay R. (Autor), Shivananda, Adarsha (Autor), Kulkarni, Anoosh (Autor), Krishnan, V. Adithya (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Apress L. P., [2023]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1356572959
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 221231s2023 nyua o 000 0 eng d
040 |a EBLCP  |b eng  |e rda  |c EBLCP  |d ORMDA  |d GW5XE  |d YDX  |d EBLCP  |d YDX  |d OCLCQ  |d N$T  |d UKAHL  |d OCLCQ  |d OCLCF  |d OCLCQ  |d OCLCO 
019 |a 1356295301  |a 1356982902 
020 |a 9781484289785  |q (electronic bk.) 
020 |a 1484289781  |q (electronic bk.) 
020 |z 9781484289778 
020 |z 1484289773 
024 7 |a 10.1007/978-1-4842-8978-5  |2 doi 
029 1 |a AU@  |b 000073225574 
029 1 |a AU@  |b 000073290407 
035 |a (OCoLC)1356572959  |z (OCoLC)1356295301  |z (OCoLC)1356982902 
037 |a 9781484289785  |b O'Reilly Media 
050 4 |a HA30.3  |b .K85 2023 
072 7 |a UYQM  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQM  |2 thema 
082 0 4 |a 006.31  |2 23/eng/20230105 
049 |a UAMI 
100 1 |a Kulkarni, Akshay R.,  |e author. 
245 1 0 |a Time Series Algorithms Recipes :  |b Implement Machine Learning and Deep Learning Techniques with Python /  |c Akshay R. Kulkarni, Adarsha Shivananda, Anoosh Kulkarni, V. Adithya Krishnan. 
264 1 |a New York, NY :  |b Apress L. P.,  |c [2023] 
300 |a 1 online resource (xvi, 174 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 |a Description based upon print version of record. 
520 |a This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing. It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations. After finishing this book, you will have a foundational understanding of various concepts relating to time series and its implementation in Python. What You Will Learn Implement various techniques in time series analysis using Python. Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average) and ARIMA (autoregressive integrated moving-average) for time series forecasting Understand univariate and multivariate modeling for time series forecasting Forecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory) Who This Book Is ForData Scientists, Machine Learning Engineers, and software developers interested in time series analysis. 
505 0 |a Chapter 1: Getting Started with Time Series -- Chapter 2: Statistical Univariate Modelling -- Chapter 3: Statistical Multivariate Modelling -- Chapter 4: Machine Learning Regression-Based Forecasting -- Chapter 5: Forecasting Using Deep Learning. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Time-series analysis  |x Computer programs. 
650 0 |a Time-series analysis  |x Data processing. 
650 0 |a Machine learning  |x Computer programs. 
650 0 |a Python (Computer program language) 
650 6 |a Série chronologique  |x Informatique. 
650 6 |a Apprentissage automatique  |x Logiciels. 
650 6 |a Python (Langage de programmation) 
650 7 |a Python (Computer program language)  |2 fast 
650 7 |a Time-series analysis  |x Computer programs  |2 fast 
650 7 |a Time-series analysis  |x Data processing  |2 fast 
655 0 |a Electronic books. 
700 1 |a Shivananda, Adarsha,  |e author. 
700 1 |a Kulkarni, Anoosh,  |e author. 
700 1 |a Krishnan, V. Adithya,  |e author. 
776 0 8 |i Print version:  |a Kulkarni, Akshay R.  |t Time Series Algorithms Recipes  |d Berkeley, CA : Apress L. P.,c2023  |z 9781484289778 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484289785/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH41098308 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7162174 
938 |a YBP Library Services  |b YANK  |n 304025850 
938 |a EBSCOhost  |b EBSC  |n 3509127 
994 |a 92  |b IZTAP