Cargando…

Machine learning security principles use various methods to keep data, networks, users, and applications safe from prying eyes /

Thwart hackers by preventing, detecting, and misdirecting access before they can plant malware, obtain credentials, engage in fraud, modify data, poison models, corrupt users, eavesdrop, and otherwise ruin your day Key Features Discover how hackers rely on misdirection and deep fakes to fool even th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mueller, John, 1958- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2022.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1356522301
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 230106s2022 xx o 000 0 eng d
040 |a YDX  |b eng  |c YDX  |d ORMDA  |d OCLCF  |d IEEEE  |d OCLCO 
019 |a 1356982053 
020 |a 9781804615409  |q (electronic bk.) 
020 |a 1804615404  |q (electronic bk.) 
020 |z 1804618853 
020 |z 9781804618851 
029 1 |a AU@  |b 000073289660 
029 1 |a AU@  |b 000073555855 
035 |a (OCoLC)1356522301  |z (OCoLC)1356982053 
037 |a 9781804618851  |b O'Reilly Media 
037 |a 10163570  |b IEEE 
050 4 |a Q325.5 
082 0 4 |a 006.3/1  |2 23/eng/20230106 
049 |a UAMI 
100 1 |a Mueller, John,  |d 1958-  |e author. 
245 1 0 |a Machine learning security principles  |h [electronic resource] :  |b use various methods to keep data, networks, users, and applications safe from prying eyes /  |c John Paul Mueller. 
260 |a Birmingham :  |b Packt Publishing,  |c 2022. 
300 |a 1 online resource 
520 |a Thwart hackers by preventing, detecting, and misdirecting access before they can plant malware, obtain credentials, engage in fraud, modify data, poison models, corrupt users, eavesdrop, and otherwise ruin your day Key Features Discover how hackers rely on misdirection and deep fakes to fool even the best security systems Retain the usefulness of your data by detecting unwanted and invalid modifications Develop application code to meet the security requirements related to machine learning Book Description Businesses are leveraging the power of AI to make undertakings that used to be complicated and pricy much easier, faster, and cheaper. The first part of this book will explore these processes in more depth, which will help you in understanding the role security plays in machine learning. As you progress to the second part, you'll learn more about the environments where ML is commonly used and dive into the security threats that plague them using code, graphics, and real-world references. The next part of the book will guide you through the process of detecting hacker behaviors in the modern computing environment, where fraud takes many forms in ML, from gaining sales through fake reviews to destroying an adversary's reputation. Once you've understood hacker goals and detection techniques, you'll learn about the ramifications of deep fakes, followed by mitigation strategies. This book also takes you through best practices for embracing ethical data sourcing, which reduces the security risk associated with data. You'll see how the simple act of removing personally identifiable information (PII) from a dataset lowers the risk of social engineering attacks. By the end of this machine learning book, you'll have an increased awareness of the various attacks and the techniques to secure your ML systems effectively. What you will learn Explore methods to detect and prevent illegal access to your system Implement detection techniques when access does occur Employ machine learning techniques to determine motivations Mitigate hacker access once security is breached Perform statistical measurement and behavior analysis Repair damage to your data and applications Use ethical data collection methods to reduce security risks Who this book is for Whether you're a data scientist, researcher, or manager working with machine learning techniques in any aspect, this security book is a must-have. While most resources available on this topic are written in a language more suitable for experts, this guide presents security in an easy-to-understand way, employing a host of diagrams to explain concepts to visual learners. While familiarity with machine learning concepts is assumed, knowledge of Python and programming in general will be useful. 
505 0 |a Table of Contents Defining Machine Learning Security Mitigating Risk at Training by Validating and Maintaining Datasets Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks Considering the Threat Environment Keeping Your Network Clean Detecting and Analyzing Anomalies Dealing with Malware Locating Potential Fraud Defending against Hackers Considering the Ramifications of Deepfakes Leveraging Machine Learning against Hacking Embracing and Incorporating Ethical Behavior. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Security systems. 
650 6 |a Apprentissage automatique. 
650 6 |a Systèmes de sécurité. 
650 7 |a security systems.  |2 aat 
650 7 |a Machine learning  |2 fast 
650 7 |a Security systems  |2 fast 
776 0 8 |i Print version:  |z 1804618853  |z 9781804618851  |w (OCoLC)1353767286 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781804618851/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 304071983 
994 |a 92  |b IZTAP