Cargando…

Beginner's guide to Streamlit with Python : build web-based data and machine learning applications /

This book will teach you the basics of Streamlit, a Python-based application framework used to build interactive dashboards and machine learning web apps. Streamlit reduces development time for web-based application prototypes of data and machine learning models. As you’ll see, Streamlit...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Raghavendra, Sujay (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Apress, [2023]
Edición:[First edition].
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1355545249
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 221220s2022 nyua o 001 0 eng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d EBLCP  |d GW5XE  |d YDX  |d TOH  |d OCLCQ  |d OCLCF  |d UKAHL 
019 |a 1355565535 
020 |a 9781484289839  |q (electronic bk.) 
020 |a 1484289838  |q (electronic bk.) 
020 |z 9781484289822 
020 |z 148428982X 
024 7 |a 10.1007/978-1-4842-8983-9  |2 doi 
029 1 |a AU@  |b 000073244384 
035 |a (OCoLC)1355545249  |z (OCoLC)1355565535 
037 |a 9781484289839  |b O'Reilly Media 
050 4 |a TK5105.875.I6 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.7/8  |2 23/eng/20221220 
049 |a UAMI 
100 1 |a Raghavendra, Sujay,  |e author. 
245 1 0 |a Beginner's guide to Streamlit with Python :  |b build web-based data and machine learning applications /  |c Sujay Raghavendra. 
250 |a [First edition]. 
264 1 |a New York, NY :  |b Apress,  |c [2023] 
300 |a 1 online resource (215 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
520 |a This book will teach you the basics of Streamlit, a Python-based application framework used to build interactive dashboards and machine learning web apps. Streamlit reduces development time for web-based application prototypes of data and machine learning models. As you’ll see, Streamlit helps develop data-enhanced analytics, build dynamic user experiences, and showcases data for data science and machine learning models. Beginner's Guide to Streamlit with Python begins with the basics of Streamlit by demonstrating how to build a basic application and advances to visualization techniques and their features. Next, it covers the various aspects of a typical Streamlit web application, and explains how to manage flow control and status elements. You’ll also explore performance optimization techniques necessary for data modules in a Streamlit application. Following this, you’ll see how to deploy Streamlit applications on various platforms. The book concludes with a few prototype natural language processing apps with computer vision implemented using Streamlit. After reading this book, you will understand the concepts, functionalities, and performance of Streamlit, and be able to develop dynamic Streamlit web-based data and machine learning applications of your own. 
505 0 |a Intro -- Table of Contents -- About the Author -- About the Technical Reviewer -- Acknowledgments -- Introduction -- Chapter 1: Introduction to Streamlit -- What Is Streamlit? -- Why Streamlit? -- Why Streamlit for Data Science and ML Engineers? -- Features of Streamlit -- Open Source -- Platforms -- Ease of Development -- Interactive Applications -- Reduced Time of Development -- No Core Web Development Knowledge -- Easy to Learn -- Model Implementation -- Compatibility -- Literate Programming Document -- Streamlit Cloud -- Optimize Change -- Error Notifications 
505 8 |a Comparing Streamlit to Alternative Frameworks -- Installing Python -- Installing Streamlit on Windows -- Installing Streamlit on Linux -- Installing Streamlit on macOS -- Testing the Streamlit Installation -- Creating Our First App -- Summary -- Chapter 2: Text and Table Elements -- Text Elements -- Titles -- Headers -- Subheaders -- Captions -- Plain Text -- Markdown -- LaTeX -- Code -- Data Elements -- Dataframes -- Tables -- Metrics -- JSON -- The write() Function as a Superfunction -- Magic -- Summary -- Chapter 3: Visualization -- The Importance of Visualization 
505 8 |a Visualization in Streamlit -- Purpose of Visualization -- Streamlit Functions -- Bar -- Line -- Area -- Map -- Graphviz -- Seaborn -- Count -- Violin -- Strip -- Altair -- Boxplot -- Area -- Heatmap -- Plotly -- Pie -- Donut -- Scatter -- Line -- Bar -- Bar Horizontal -- Subplots -- Summary -- Chapter 4: Data and Media Elements -- Images -- Multiple Images -- Background Image -- Resizing an Image -- Audio -- Video -- Balloon -- Snowflake -- Emojis -- Summary -- Chapter 5: Buttons and Sliders -- Buttons -- Radio Buttons -- Check Boxes -- Drop-Downs -- Multiselects -- Download Buttons 
505 8 |a Progress Bars -- Spinners -- Summary -- Chapter 6: Forms -- Text Box -- Text Area -- Number Input -- Time -- Date -- Color -- File Upload -- Text/Docx Document -- PDF Upload -- Dataset Upload -- Image Upload -- Uploading Multiple Images -- Saving Uploaded Documents -- Submit Button -- Summary -- Chapter 7: Columns and Navigation -- Columns -- Spaced-Out Columns -- Columns with Padding -- Grids -- Expanders/Accordions -- Containers -- Empty Containers -- Sidebars -- Multipage Navigation -- Main Page -- Pages -- Summary -- Chapter 8: Control Flow and Advanced Features -- Alert Box -- st.info() 
505 8 |a St.warning() -- st.success() -- st.error() -- st.exception() -- Control Flow -- Stop Execution -- Rerun the Script -- st.form_submit_button -- Advanced Features -- Configuring the Page -- st.echo -- st.experimental_show -- Session State -- Performance -- Caching -- st.experimental_memo -- st.experimental_memo.clear() -- st.experimental_singleton -- st.experimental_singleton.clear -- Summary -- Chapter 9: Natural Language Processing -- NLP App Creation -- User Input -- Cleaning the Text -- Predictions -- Setting Up Files -- Requirement Text -- setup.sh -- Procfile -- GitHub Repository Creation 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Web applications. 
650 0 |a Artificial intelligence. 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
650 7 |a Web applications.  |2 fast  |0 (OCoLC)fst01895855 
776 0 8 |c Original  |z 148428982X  |z 9781484289822  |w (OCoLC)1346349404 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484289839/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH41150835 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7158289 
938 |a YBP Library Services  |b YANK  |n 303679945 
994 |a 92  |b IZTAP