|
|
|
|
LEADER |
00000cgm a22000007i 4500 |
001 |
OR_on1354327225 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o c |
007 |
vz czazuu |
007 |
cr cnannnuuuuu |
008 |
221212s2022 cau171 o vleng d |
040 |
|
|
|a ORMDA
|b eng
|e rda
|e pn
|c ORMDA
|d OCLCF
|d TXI
|
024 |
8 |
|
|a 0636920847809
|
029 |
1 |
|
|a AU@
|b 000073556209
|
035 |
|
|
|a (OCoLC)1354327225
|
037 |
|
|
|a 0636920847809
|b O'Reilly Media
|
050 |
|
4 |
|a Q325.5
|
082 |
0 |
4 |
|a 006.3/1
|2 23/eng/20221212
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a AI Superstream.
|p MLOps.
|
246 |
3 |
0 |
|a MLOps
|
250 |
|
|
|a [First edition].
|
264 |
|
1 |
|a Sebastopol, CA :
|b O'Reilly Media, Inc.,
|c [2022]
|
300 |
|
|
|a 1 online resource (1 video file (2 hr., 51 min.)) :
|b sound, color.
|
306 |
|
|
|a 025100
|
336 |
|
|
|a two-dimensional moving image
|b tdi
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
344 |
|
|
|a digital
|2 rdatr
|
347 |
|
|
|a video file
|2 rdaft
|
380 |
|
|
|a Instructional films
|2 lcgft
|
511 |
0 |
|
|a Host, Shingai Manjengwa ; speakers include Susan Shu Chang, Olga Tsubiks, Noah Gift, Jason Bell, Isabel Zimmerman, Todd Underwood.
|
505 |
0 |
0 |
|t MLOps from good to great /
|r Susan Shu Chang
|g (19:25) --
|t MLOps culture for continuous experimentation /
|r Olga Tsubiks
|g (27:58) --
|t What can MLOps learn from the SRE mindset? /
|r Noah Gift
|g (30:47) --
|t Deployment and metrics of machine learning models with Kubernetes and Prometheus /
|r Jason Bell
|g (32:51) --
|t Composable tools for robust MLOps deployment /
|r Isabel Zimmerman
|g (29:33) --
|t ML model quality as a reliability problem /
|r Todd Underwood
|g (29:56).
|
520 |
|
|
|a MLOps is consistently one of the greatest challenges engineers face when creating and maintaining machine learning systems. Join expert practitioners to learn techniques and best practices for operationalizing machine learning models and explore case studies of them in action, showing you what works--and what doesn't. This recording of a live event is for you because...you're a data or machine learning practitioner who puts machine learning models into production, or you're embarking on an MLOps career path, or if you want to improve your process of productionizing machine learning models by applying new techniques and best practices.
|
588 |
|
|
|a Online resource; title from title details screen (O'Reilly, viewed December 12, 2022).
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
7 |
|a Machine learning.
|2 fast
|0 (OCoLC)fst01004795
|
655 |
|
7 |
|a Instructional films.
|2 fast
|0 (OCoLC)fst01726236
|
655 |
|
7 |
|a Internet videos.
|2 fast
|0 (OCoLC)fst01750214
|
655 |
|
7 |
|a Nonfiction films.
|2 fast
|0 (OCoLC)fst01710269
|
655 |
|
7 |
|a Instructional films.
|2 lcgft
|
655 |
|
7 |
|a Nonfiction films.
|2 lcgft
|
655 |
|
7 |
|a Internet videos.
|2 lcgft
|
700 |
1 |
|
|a Manjengwa, Shingai.
|e host.
|
700 |
1 |
|
|a Chang, Susan.
|e speaker.
|
700 |
1 |
|
|a Tsubiks, Olga.
|e speaker.
|
700 |
1 |
|
|a Gift, Noah.
|e speaker.
|
700 |
1 |
|
|a Bell, Jason
|c (Computer scientist),
|e speaker.
|
700 |
1 |
|
|a Zimmerman, Isabel.
|e speaker.
|
700 |
1 |
|
|a Underwood, Todd
|c (Computer scientist),
|e speaker.
|
710 |
2 |
|
|a O'Reilly (Firm),
|e publisher.
|
856 |
4 |
0 |
|u https://learning.oreilly.com/videos/~/0636920847809/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
994 |
|
|
|a 92
|b IZTAP
|