Cargando…

Python data science handbook : essential tools for working with data /

Python is a first-class tool for many researchers, primarily because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the new edition of Python Data Science Handbook do you get them all-...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Vanderplas, Jacob T. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, Incorporated, 2023.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007i 4500
001 OR_on1353837789
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 221209s2023 cau o 001 0 eng d
040 |a YDX  |b eng  |e rda  |c YDX  |d ORMDA  |d UKAHL  |d YDX  |d OCLCF  |d MNX  |d OCLCO 
020 |a 9781098121198  |q electronic book 
020 |a 1098121198  |q electronic book 
020 |z 1098121228 
020 |z 9781098121228 
029 1 |a AU@  |b 000073179908 
029 1 |a AU@  |b 000074063612 
035 |a (OCoLC)1353837789 
037 |a 9781098121211  |b O'Reilly Media 
050 4 |a QA76.73.P98  |b V36 2023 
082 0 4 |a 006.3/12  |2 23/eng/20221213 
049 |a UAMI 
100 1 |a Vanderplas, Jacob T.,  |e author. 
245 1 0 |a Python data science handbook :  |b essential tools for working with data /  |c Jake VanderPlas. 
250 |a Second edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media, Incorporated,  |c 2023. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index 
505 0 |a Part I: Jupyter: beyond normal Pythong. Getting started in IPython and Jupyter -- Enhanced interactive features -- Debugging and profiling -- Part II: Introduction to NumPy -- Understanding data types in Python -- The basics of NumPy arrays -- Computation on NumPy arrays: universal functions -- Aggregations: min, max, and everything in between -- Computation on arrays: broadcasting -- Comparisons, masks, and Boolean logic -- Fancy indexing -- Sorting arrays -- Structured data: NumPy's structured arrays -- Part III: Data manipulation with Pandas. Introducing Pandas objects -- Data indexing and selection -- Operating on data in Pandas -- Handling missing data -- Hierarchical indexing -- Combining datasets: concat and append -- Combining datasets: merge and join -- Aggregation and grouping -- Pivot tables -- Vectorized string operations -- Working with time series -- High-performance Pandas: eval and query -- Part IV: Visualization with Matplotlib -- General Matplotlib tips -- Simple line plots -- Simple scatter plots -- Density and contour plots -- Customizing plot legends -- Customizing colorbars -- Multiple subplots -- Text and annotation -- Customizing ticks -- Customizing Matplotlib: configurations and stylesheets -- Three-dimensional plotting in Matplotlib -- Visualization with Seaborn -- Part V: Machine learning. What is machine learning? -- Introducing Scikit-Learn -- Hyperparameters and model validation -- Feature engineering -- In depth: Naive Bayes classification -- In depth: linear regression -- In depth: support vector machines -- In depth: decision trees and random forests -- In depth: principal component analysis -- In depth: manifold learning -- In depth: k-means clustering -- In depth: Gaussian mixture models -- In depth: kernel density estimation -- Application: a face detection pipeline 
520 |a Python is a first-class tool for many researchers, primarily because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the new edition of Python Data Science Handbook do you get them all--Python, NumPy, pandas, Matplotlib, scikit-learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find the second edition of this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you'll learn how: IPython and Jupyter provide computational environments for scientists using Python NumPy includes the ndarray for efficient storage and manipulation of dense data arrays Pandas contains the DataFrame for efficient storage and manipulation of labeled/columnar data Matplotlib includes capabilities for a flexible range of data visualizations Scikit-learn helps you build efficient and clean Python implementations of the most important and established machine learning algorithms. 
588 |a Description based upon online resource; title from PDF title page (viewed Jan 4th, 2023). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Python (Computer program language) 
650 0 |a Data mining. 
650 6 |a Python (Langage de programmation) 
650 6 |a Exploration de données (Informatique) 
650 7 |a Data mining  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
776 0 8 |i Print version:  |z 1098121228  |z 9781098121228  |w (OCoLC)1322368655 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781098121211/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH41039651 
938 |a YBP Library Services  |b YANK  |n 303343438 
994 |a 92  |b IZTAP