Cargando…

Finding ghosts in your data : anomaly detection techniques with examples in Python /

Discover key information buried in the noise of data by learning a variety of anomaly detection techniques and using the Python programming language to build a robust service for anomaly detection against a variety of data types. The book starts with an overview of what anomalies and outliers are an...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Feasel, Kevin (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Apress, 2022.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1350688502
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 221112s2022 nyua ob 001 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d ORMDA  |d GW5XE  |d YDX  |d OCLCF  |d UKAHL  |d TOH  |d VLB  |d OCLCO 
019 |a 1350670451  |a 1396873488 
020 |a 9781484288702  |q (electronic bk.) 
020 |a 148428870X  |q (electronic bk.) 
020 |z 1484288696 
020 |z 9781484288696 
024 7 |a 10.1007/978-1-4842-8870-2  |2 doi 
029 1 |a AU@  |b 000072937688 
035 |a (OCoLC)1350688502  |z (OCoLC)1350670451  |z (OCoLC)1396873488 
037 |a 9781484288702  |b O'Reilly Media 
050 4 |a Q336  |b .F43 2022eb 
082 0 4 |a 005.133  |2 23/eng/20221115 
049 |a UAMI 
100 1 |a Feasel, Kevin,  |e author. 
245 1 0 |a Finding ghosts in your data :  |b anomaly detection techniques with examples in Python /  |c Kevin Feasel. 
264 1 |a New York :  |b Apress,  |c 2022. 
264 4 |c ©2022 
300 |a 1 online resource (xx, 353 pages : illustrations) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Description based upon print version of record. 
504 |a Includes bibliographical references and index. 
520 |a Discover key information buried in the noise of data by learning a variety of anomaly detection techniques and using the Python programming language to build a robust service for anomaly detection against a variety of data types. The book starts with an overview of what anomalies and outliers are and uses the Gestalt school of psychology to explain just why it is that humans are naturally great at detecting anomalies. From there, you will move into technical definitions of anomalies, moving beyond "I know it when I see it" to defining things in a way that computers can understand. The core of the book involves building a robust, deployable anomaly detection service in Python. You will start with a simple anomaly detection service, which will expand over the course of the book to include a variety of valuable anomaly detection techniques, covering descriptive statistics, clustering, and time series scenarios. Finally, you will compare your anomaly detection service head-to-head with a publicly available cloud offering and see how they perform. The anomaly detection techniques and examples in this book combine psychology, statistics, mathematics, and Python programming in a way that is easily accessible to software developers. They give you an understanding of what anomalies are and why you are naturally a gifted anomaly detector. Then, they help you to translate your human techniques into algorithms that can be used to program computers to automate the process. You'll develop your own anomaly detection service, extend it using a variety of techniques such as including clustering techniques for multivariate analysis and time series techniques for observing data over time, and compare your service head-on against a commercial service. What You Will Learn Understand the intuition behind anomalies Convert your intuition into technical descriptions of anomalous data Detect anomalies using statistical tools, such as distributions, variance and standard deviation, robust statistics, and interquartile range Apply state-of-the-art anomaly detection techniques in the realms of clustering and time series analysis Work with common Python packages for outlier detection and time series analysis, such as scikit-learn, PyOD, and tslearn Develop a project from the ground up which finds anomalies in data, starting with simple arrays of numeric data and expanding to include multivariate inputs and even time series data Who This Book Is For For software developers with at least some familiarity with the Python programming language, and who would like to understand the science and some of the statistics behind anomaly detection techniques. Readers are not required to have any formal knowledge of statistics as the book introduces relevant concepts along the way. 
505 0 0 |g Part I.  |t What Is an Anomaly? --  |t The Importance of Anomalies and Anomaly Detection --  |t Humans are pattern matchers --  |t Formalizing anomaly detection --  |g Part II.  |t Building an anomaly detector --  |t Laying out the framework --  |t Building a test suite --  |t Implementing the first methods --  |t Extending the ensemble --  |t Visualize the results --  |g Part III.  |t Multivariate anomaly detection --  |t Clustering and anomalies --  |t Connectivity-based outlier factor (COF) --  |t Local correlation integral (LOCI) --  |t Copula-based outlier detection (COPOD) --  |g Part IV.  |t Time series anomaly detection --  |t Time and anomalies --  |t Change point detection --  |t An introduction to multi-series anomaly detection --  |t Standard deviation of difference (DIFFSTD) -- Symbolic aggregate approximation (SAX) --  |g Part V.  |t Stacking up to the competition --  |t Configuring azure cognitive services anomaly detector --  |t Performing a bake-off --  |t Bibliography. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Computer programming. 
650 0 |a Anomaly detection (Computer security) 
650 0 |a Python (Computer program language) 
650 6 |a Programmation (Informatique) 
650 6 |a Détection d'anomalies (Sécurité informatique) 
650 6 |a Python (Langage de programmation) 
650 7 |a computer programming.  |2 aat 
650 7 |a Anomaly detection (Computer security)  |2 fast 
650 7 |a Computer programming  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
776 0 8 |i Print version:  |a Feasel, Kevin  |t Finding Ghosts in Your Data  |d Berkeley, CA : Apress L. P.,c2022  |z 9781484288696 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484288702/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH41022982 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7134122 
938 |a YBP Library Services  |b YANK  |n 303249037 
994 |a 92  |b IZTAP