Cargando…

Deep Learning for Genomics Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology.

Learn concepts, methodologies, and applications of deep learning for building predictive models from complex genomics data sets to overcome challenges in the life sciences and biotechnology industries Key Features Apply deep learning algorithms to solve real-world problems in the field of genomics E...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Devisetty, Upendra Kumar
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [S.l.] : PACKT PUBLISHING LIMITED, 2022.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1350667762
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 221112s2022 xx o 000 0 eng d
040 |a YDX  |b eng  |c YDX  |d ORMDA  |d N$T  |d EBLCP  |d OCLCF  |d OCLCQ  |d IEEEE 
019 |a 1350687028 
020 |a 9781804613016  |q (electronic bk.) 
020 |a 1804613010  |q (electronic bk.) 
020 |z 1804615447 
020 |z 9781804615447 
029 1 |a AU@  |b 000074158763 
035 |a (OCoLC)1350667762  |z (OCoLC)1350687028 
037 |a 9781804615447  |b O'Reilly Media 
037 |a 10163556  |b IEEE 
050 4 |a QH438.4.S73 
082 0 4 |a 572.8/60727  |2 23/eng/20221122 
049 |a UAMI 
100 1 |a Devisetty, Upendra Kumar. 
245 1 0 |a Deep Learning for Genomics  |h [electronic resource] :  |b Data-Driven Approaches for Genomics Applications in Life Sciences and Biotechnology. 
260 |a [S.l.] :  |b PACKT PUBLISHING LIMITED,  |c 2022. 
300 |a 1 online resource 
520 |a Learn concepts, methodologies, and applications of deep learning for building predictive models from complex genomics data sets to overcome challenges in the life sciences and biotechnology industries Key Features Apply deep learning algorithms to solve real-world problems in the field of genomics Extract biological insights from deep learning models built from genomic datasets Train, tune, evaluate, deploy, and monitor deep learning models for enabling predictions in genomics Book Description Deep learning has shown remarkable promise in the field of genomics; however, there is a lack of a skilled deep learning workforce in this discipline. This book will help researchers and data scientists to stand out from the rest of the crowd and solve real-world problems in genomics by developing the necessary skill set. Starting with an introduction to the essential concepts, this book highlights the power of deep learning in handling big data in genomics. First, you'll learn about conventional genomics analysis, then transition to state-of-the-art machine learning-based genomics applications, and finally dive into deep learning approaches for genomics. The book covers all of the important deep learning algorithms commonly used by the research community and goes into the details of what they are, how they work, and their practical applications in genomics. The book dedicates an entire section to operationalizing deep learning models, which will provide the necessary hands-on tutorials for researchers and any deep learning practitioners to build, tune, interpret, deploy, evaluate, and monitor deep learning models from genomics big data sets. By the end of this book, you'll have learned about the challenges, best practices, and pitfalls of deep learning for genomics. What you will learn Discover the machine learning applications for genomics Explore deep learning concepts and methodologies for genomics applications Understand supervised deep learning algorithms for genomics applications Get to grips with unsupervised deep learning with autoencoders Improve deep learning models using generative models Operationalize deep learning models from genomics datasets Visualize and interpret deep learning models Understand deep learning challenges, pitfalls, and best practices Who this book is for This deep learning book is for machine learning engineers, data scientists, and academicians practicing in the field of genomics. It assumes that readers have intermediate Python programming knowledge, basic knowledge of Python libraries such as NumPy and Pandas to manipulate and parse data, Matplotlib, and Seaborn for visualizing data, along with a base in genomics and genomic analysis concepts. 
505 0 |a Table of Contents Introducing Machine Learning for Genomics Genomics Data Analysis Machine Learning Methods for Genomic Applications Deep Learning for Genomics Introducing Convolutional Neural Networks for Genomics Recurrent Neural Networks in Genomics Unsupervised Deep Learning with Autoencoders GANs for Improving Models in Genomics Building and Tuning Deep Learning Models Model Interpretability in Genomics Model Deployment and Monitoring Challenges, Pitfalls, and Best Practices for Deep Learning in Genomics. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Genomics  |x Statistical methods. 
650 0 |a Genomics  |x Data processing. 
650 7 |a Genomics  |x Data processing.  |2 fast  |0 (OCoLC)fst00940229 
650 7 |a Genomics  |x Statistical methods.  |2 fast  |0 (OCoLC)fst00940232 
776 0 8 |i Print version:  |z 9781804613016 
776 0 8 |i Print version:  |z 1804615447  |z 9781804615447  |w (OCoLC)1348140226 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781804615447/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 303247396 
938 |a YBP Library Services  |b YANK  |n 303247396 
938 |a EBSCOhost  |b EBSC  |n 3451633 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL30225465 
994 |a 92  |b IZTAP