Cargando…

The machine learning solutions architect handbook : create machine learning platforms to run solutions in an enterprise setting /

Build highly secure and scalable machine learning platforms to support the fast-paced adoption of machine learning solutions About This Audiobook Explore different ML tools and frameworks to solve large-scale machine learning challenges in the cloud Build an efficient data science environment for da...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ping, David (Autor)
Formato: Electrónico Audiom
Idioma:Inglés
Publicado: [Place of publication not identified] : Packt Publishing, 2022.
Edición:[First edition].
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cim a22000007i 4500
001 OR_on1350487496
003 OCoLC
005 20231017213018.0
006 m o h
006 m o h
007 sz zunnnnnuneu
007 cr nnannnuuuuu
008 221108s2022 xx nnnn o i n eng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d OCLCF  |d OCLCO 
020 |a 9781837632459  |q (electronic audio bk.) 
020 |a 1837632456  |q (electronic audio bk.) 
029 1 |a AU@  |b 000072937680 
035 |a (OCoLC)1350487496 
037 |a 9781837632459  |b O'Reilly Media 
050 4 |a Q325.5 
082 0 4 |a 006.31  |2 23/eng/20221108 
049 |a UAMI 
100 1 |a Ping, David,  |e author. 
245 1 4 |a The machine learning solutions architect handbook :  |b create machine learning platforms to run solutions in an enterprise setting /  |c David Ping. 
250 |a [First edition]. 
264 1 |a [Place of publication not identified] :  |b Packt Publishing,  |c 2022. 
300 |a 1 online resource (1 audio file (08 hr., 32 min.)) 
306 |a 083200 
336 |a spoken word  |b spw  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
344 |a digital  |2 rdatr 
347 |a audio file  |2 rdaft 
520 |a Build highly secure and scalable machine learning platforms to support the fast-paced adoption of machine learning solutions About This Audiobook Explore different ML tools and frameworks to solve large-scale machine learning challenges in the cloud Build an efficient data science environment for data exploration, model building, and model training Learn how to implement bias detection, privacy, and explainability in ML model development In Detail When equipped with a highly scalable machine learning (ML) platform, organizations can quickly scale the delivery of ML products for faster business value realization. There is a huge demand for skilled ML solutions architects in different industries, and this handbook will help you master the design patterns, architectural considerations, and the latest technology insights you'll need to become one. You'll start by understanding ML fundamentals and how ML can be applied to solve real-world business problems. Once you've explored a few leading problem-solving ML algorithms, this book will help you tackle data management and get the most out of ML libraries such as TensorFlow and PyTorch. Using open source technology such as Kubernetes/Kubeflow to build a data science environment and ML pipelines will be covered next, before moving on to building an enterprise ML architecture using Amazon Web Services (AWS). You'll also learn about security and governance considerations, advanced ML engineering techniques, and how to apply bias detection, explainability, and privacy in ML model development. And finally, you'll get acquainted with AWS AI services and their applications in real-world use cases. By the end of this audiobook, you'll be able to design and build an ML platform to support common use cases and architecture patterns like a true professional. Audience This audiobook is for data scientists, data engineers, cloud architects, and machine learning enthusiasts who want to become machine learning solutions architects. You'll need basic knowledge of the Python programming language, AWS, linear algebra, probability, and networking concepts before you get started with this handbook. 
588 0 |a Online resource; title from title details screen (O'Reilly, viewed November 8, 2022). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a Machine learning  |2 fast 
655 7 |a Audiobooks  |2 fast 
655 7 |a Audiobooks.  |2 lcgft 
655 7 |a Livres audio.  |2 rvmgf 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781837632459/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP