Explainable AI for Practitioners : designing and implementing explainable ML solutions /
Most intermediate-level machine learning books focus on how to optimize models by increasing accuracy or decreasing prediction error. But this approach often overlooks the importance of understanding why and how your ML model makes the predictions that it does. Explainability methods provide an esse...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | Munn, Michael (ML solutions engineer) |
Otros Autores: | Pitman, David, Taly, Ankur |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Sebastapol, CA :
O'Reilly Media,
2022.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Ejemplares similares
-
AI Superstream.
Publicado: (2022) -
Explainable deep learning AI : methods and challenges /
Publicado: (2023) -
Automated machine learning in action : AutoML basics.
Publicado: (2021) -
Feature Store for Machine Learning : Curate, Discover, Share and Serve ML Features at Scale.
por: Kumar M. J., Jayanth
Publicado: (2022) -
Interpretable AI : building explainable machine learning systems /
por: Thampi, Ajay
Publicado: (2022)