|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_on1349468003 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
221101t20222022nyua o 001 0 eng d |
040 |
|
|
|a ORMDA
|b eng
|e rda
|e pn
|c ORMDA
|d EBLCP
|d GW5XE
|d YDX
|d SFB
|d OCLCF
|d UKAHL
|d OCLCQ
|d N$T
|
019 |
|
|
|a 1349563191
|a 1401976194
|
020 |
|
|
|a 9781484287804
|q electronic book
|
020 |
|
|
|a 1484287800
|q electronic book
|
020 |
|
|
|z 9781484287798
|
020 |
|
|
|z 1484287797
|
024 |
7 |
|
|a 10.1007/978-1-4842-8780-4
|2 doi
|
029 |
1 |
|
|a AU@
|b 000072898645
|
035 |
|
|
|a (OCoLC)1349468003
|z (OCoLC)1349563191
|z (OCoLC)1401976194
|
037 |
|
|
|a 9781484287804
|b O'Reilly Media
|
050 |
|
4 |
|a QA276.45.R3
|b M35 2022eb
|
072 |
|
7 |
|a UMX
|2 bicssc
|
072 |
|
7 |
|a COM000000
|2 bisacsh
|
072 |
|
7 |
|a UMX
|2 thema
|
082 |
0 |
4 |
|a 519.50285/536
|2 23/eng/20221101
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Mailund, Thomas,
|e author.
|
245 |
1 |
0 |
|a R 4 data science quick reference :
|b a pocket guide to APIs, libraries, and packages /
|c Thomas Mailund.
|
250 |
|
|
|a Second edition.
|
264 |
|
1 |
|a New York, NY :
|b Apress,
|c [2022]
|
264 |
|
4 |
|c Ã2022
|
300 |
|
|
|a 1 online resource (231 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Includes index.
|
520 |
|
|
|a In this handy, quick reference book you'll be introduced to several R data science packages, with examples of how to use each of them. All concepts will be covered concisely, with many illustrative examples using the following APIs: readr, dibble, forecasts, lubridate, stringr, tidyr, magnittr, dplyr, purrr, ggplot2, modelr, and more. With R 4 Data Science Quick Reference, you'll have the code, APIs, and insights to write data science-based applications in the R programming language. You'll also be able to carry out data analysis. All source code used in the book is freely available on GitHub.
|
505 |
0 |
|
|a 1. Introduction. - 2. Importing Data: readr -- 3. Representing Tables: tibble. - 4. Tidy+select, 5. Reformatting Tables: tidyr -- 6. Pipelines: magrittr -- 7. Functional Programming: purrr. - 8. Manipulating Data Frames: dplyr. - 9. Working with Strings: stringr -- 10. Working with Factors: forcats. - 11. Working with Dates: lubridate. - 12. Working with Models: broom and modelr. - 13. Plotting: ggplot2 -- 14. Conclusions.
|
588 |
|
|
|a Description based on online resource; title from digital title page (viewed on November 10, 2022).
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a R (Computer program language)
|
650 |
|
0 |
|a Statistics
|x Data processing.
|
650 |
|
7 |
|a R (Computer program language)
|2 fast
|0 (OCoLC)fst01086207
|
650 |
|
7 |
|a Statistics
|x Data processing.
|2 fast
|0 (OCoLC)fst01132113
|
776 |
0 |
8 |
|c Original
|z 1484287797
|z 9781484287798
|w (OCoLC)1340031478
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781484287804/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH40987763
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL7127626
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 18199219
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 3435352
|
994 |
|
|
|a 92
|b IZTAP
|