Cargando…

QUANTUM MACHINE LEARNING AND OPTIMISATION IN FINANCE on the road to quantum advantage /

Learn the principles of quantum machine learning and how to apply them in finance. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key Features Discover how to solve optimisation problems on quantum computers that can provide a speedup edge over classical methods Use me...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Jacquier, Antoine
Otros Autores: Kondratyev, Oleksiy, Lipton, Alexander, López de Prado, Marcos Mailoc
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [S.l.] : PACKT PUBLISHING LIMITED, 2022.
Colección:Expert insight.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1349452234
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 221102s2022 xx o 000 0 eng d
040 |a YDX  |b eng  |c YDX  |d ORMDA  |d EBLCP  |d UKMGB  |d OCLCF  |d UKAHL  |d OCLCQ  |d N$T  |d IEEEE 
015 |a GBC2F1069  |2 bnb 
016 7 |a 020725175  |2 Uk 
020 |a 9781801817875  |q (electronic bk.) 
020 |a 1801817871  |q (electronic bk.) 
020 |z 1801813574 
020 |z 9781801813570 
029 1 |a UKMGB  |b 020725175 
029 1 |a AU@  |b 000072903796 
035 |a (OCoLC)1349452234 
037 |a 9781801813570  |b O'Reilly Media 
037 |a 10162583  |b IEEE 
050 4 |a HG104 
082 0 4 |a 332.028541  |2 23/eng/20221108 
049 |a UAMI 
100 1 |a Jacquier, Antoine. 
245 1 0 |a QUANTUM MACHINE LEARNING AND OPTIMISATION IN FINANCE  |h [electronic resource] :  |b on the road to quantum advantage /  |c Antoine Jacquier, Oleksiy Kondratyev ; foreword by Alexander Lipton & Marcos López de Prado. 
260 |a [S.l.] :  |b PACKT PUBLISHING LIMITED,  |c 2022. 
300 |a 1 online resource 
336 |a text  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
490 1 |a Expert insight 
520 |a Learn the principles of quantum machine learning and how to apply them in finance. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key Features Discover how to solve optimisation problems on quantum computers that can provide a speedup edge over classical methods Use methods of analogue and digital quantum computing to build powerful generative models Create the latest algorithms that work on Noisy Intermediate-Scale Quantum (NISQ) computers Book Description With recent advances in quantum computing technology, we finally reached the era of Noisy Intermediate-Scale Quantum (NISQ) computing. NISQ-era quantum computers are powerful enough to test quantum computing algorithms and solve hard real-world problems faster than classical hardware. Speedup is so important in financial applications, ranging from analysing huge amounts of customer data to high frequency trading. This is where quantum computing can give you the edge. Quantum Machine Learning and Optimisation in Finance shows you how to create hybrid quantum-classical machine learning and optimisation models that can harness the power of NISQ hardware. This book will take you through the real-world productive applications of quantum computing. The book explores the main quantum computing algorithms implementable on existing NISQ devices and highlights a range of financial applications that can benefit from this new quantum computing paradigm. This book will help you be one of the first in the finance industry to use quantum machine learning models to solve classically hard real-world problems. We may have moved past the point of quantum computing supremacy, but our quest for establishing quantum computing advantage has just begun! What you will learn Train parameterised quantum circuits as generative models that excel on NISQ hardware Solve hard optimisation problems Apply quantum boosting to financial applications Learn how the variational quantum eigensolver and the quantum approximate optimisation algorithms work Analyse the latest algorithms from quantum kernels to quantum semidefinite programming Apply quantum neural networks to credit approvals Who this book is for This book is for Quants and developers, data scientists, researchers, and students in quantitative finance. Although the focus is on financial use cases, all the methods and techniques are transferable to other areas. 
505 0 |a Cover -- Copyright -- Contributors -- Table of Contents -- Preface -- Chapter 1: The Principles of Quantum Mechanics -- Part I -- Chapter 2: Adiabatic Quantum Computing -- Chapter 3: Quadratic Unconstrained Binary Optimisation -- Chapter 4: Quantum Boosting -- Chapter 5: Quantum Boltzmann Machine -- Part II -- Chapter 6: Qubits and Quantum Logic Gates -- Chapter 7: Parameterised Quantum Circuits and Data Encoding -- Chapter 8: Quantum Neural Network -- Chapter 9: Quantum Neural Network -- Chapter 10: Variational Quantum Eigensolver 
505 8 |a Chapter 11: Quantum Approximate Optimisation Algorithm -- Chapter 12: The Power of Parameterised Quantum Circuits -- Chapter 13: Looking Ahead -- Index -- Other Books You Might Enjoy -- Packt Page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Finance  |x Data processing. 
650 0 |a Finance  |x Mathematical models. 
650 0 |a Machine learning. 
650 0 |a Quantum computing. 
650 7 |a Finance  |x Data processing.  |2 fast  |0 (OCoLC)fst00924370 
650 7 |a Finance  |x Mathematical models.  |2 fast  |0 (OCoLC)fst00924398 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Quantum computing.  |2 fast  |0 (OCoLC)fst01920679 
700 1 |a Kondratyev, Oleksiy. 
700 1 |a Lipton, Alexander. 
700 1 |a López de Prado, Marcos Mailoc. 
776 0 8 |i Print version:  |z 9781801817875 
776 0 8 |i Print version:  |z 1801813574  |z 9781801813570  |w (OCoLC)1335115209 
830 0 |a Expert insight. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781801813570/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH40409913 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL30196408 
938 |a YBP Library Services  |b YANK  |n 303219443 
938 |a YBP Library Services  |b YANK  |n 303219443 
938 |a EBSCOhost  |b EBSC  |n 3426758 
994 |a 92  |b IZTAP