Cargando…

ACCELERATE DEEP LEARNING WORKLOADS WITH AMAZON SAGEMAKER train, deploy and scale deep learning models effectively using Amazon Sagemaker /

Plan and design model serving infrastructure to run and troubleshoot distributed deep learning training jobs for improved model performance. Key Features Explore key Amazon SageMaker capabilities in the context of deep learning Train and deploy deep learning models using SageMaker managed capabiliti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dabravolski, Vadim (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [S.l.] : PACKT PUBLISHING LIMITED, 2022.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1349274548
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 221030s2022 xx o 000 0 eng d
040 |a YDX  |b eng  |c YDX  |d ORMDA  |d UKMGB  |d OCLCF  |d UKAHL  |d IEEEE  |d OCLCO 
015 |a GBC2J0246  |2 bnb 
016 7 |a 020787729  |2 Uk 
020 |a 9781801813112  |q (electronic bk.) 
020 |a 1801813116  |q (electronic bk.) 
020 |z 1801816441 
020 |z 9781801816441 
029 1 |a AU@  |b 000072898625 
029 1 |a UKMGB  |b 020787729 
029 1 |a AU@  |b 000072903889 
035 |a (OCoLC)1349274548 
037 |a 9781801816441  |b O'Reilly Media 
037 |a 10163665  |b IEEE 
050 4 |a Q325.5 
082 0 4 |a 006.3/1  |2 23/eng/20221101 
049 |a UAMI 
100 1 |a Dabravolski, Vadim,  |e author. 
245 1 0 |a ACCELERATE DEEP LEARNING WORKLOADS WITH AMAZON SAGEMAKER  |h [electronic resource] :  |b train, deploy and scale deep learning models effectively using Amazon Sagemaker /  |c Vadim Dabravolski. 
260 |a [S.l.] :  |b PACKT PUBLISHING LIMITED,  |c 2022. 
300 |a 1 online resource 
336 |a text  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
520 |a Plan and design model serving infrastructure to run and troubleshoot distributed deep learning training jobs for improved model performance. Key Features Explore key Amazon SageMaker capabilities in the context of deep learning Train and deploy deep learning models using SageMaker managed capabilities and optimize your deep learning workloads Cover in detail the theoretical and practical aspects of training and hosting your deep learning models on Amazon SageMaker Book Description Over the past 10 years, deep learning has grown from being an academic research field to seeing wide-scale adoption across multiple industries. Deep learning models demonstrate excellent results on a wide range of practical tasks, underpinning emerging fields such as virtual assistants, autonomous driving, and robotics. In this book, you will learn about the practical aspects of designing, building, and optimizing deep learning workloads on Amazon SageMaker. The book also provides end-to-end implementation examples for popular deep-learning tasks, such as computer vision and natural language processing. You will begin by exploring key Amazon SageMaker capabilities in the context of deep learning. Then, you will explore in detail the theoretical and practical aspects of training and hosting your deep learning models on Amazon SageMaker. You will learn how to train and serve deep learning models using popular open-source frameworks and understand the hardware and software options available for you on Amazon SageMaker. The book also covers various optimizations technique to improve the performance and cost characteristics of your deep learning workloads. By the end of this book, you will be fluent in the software and hardware aspects of running deep learning workloads using Amazon SageMaker. What you will learn Cover key capabilities of Amazon SageMaker relevant to deep learning workloads Organize SageMaker development environment Prepare and manage datasets for deep learning training Design, debug, and implement the efficient training of deep learning models Deploy, monitor, and optimize the serving of DL models Who this book is for This book is relevant for ML engineers who work on deep learning model development and training, and for Solutions Architects who design and optimize end-to-end deep learning workloads. It assumes familiarity with the Python ecosystem, principles of Machine Learning and Deep Learning, and basic knowledge of the AWS cloud. 
505 0 |a Table of Contents Introducing Deep Learning with Amazon SageMaker Deep Learning Frameworks and Containers on SageMaker Managing SageMaker Development Environment Managing Deep Learning Datasets Considering Hardware for Deep Learning Training Engineering Distributed Training Operationalizing Deep Learning Training Considering Hardware For Inference Implementing Model Servers Operationalizing Inference Workloads. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Amazon Web Services. 
650 0 |a Machine learning. 
650 0 |a Web services. 
650 0 |a Cloud computing. 
650 6 |a Apprentissage automatique. 
650 6 |a Services Web. 
650 6 |a Infonuagique. 
650 7 |a Cloud computing  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Web services  |2 fast 
776 0 8 |i Print version:  |z 9781801813112 
776 0 8 |i Print version:  |z 1801816441  |z 9781801816441  |w (OCoLC)1348140022 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781801816441/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH40904378 
938 |a YBP Library Services  |b YANK  |n 303217659 
994 |a 92  |b IZTAP