Data science and analytics for SMEs : consulting, tools, practical use cases /
Master the tricks and techniques of business analytics consulting, specifically applicable to small-to-medium businesses (SMEs). Written to help you hone your business analytics skills, this book applies data science techniques to help solve problems and improve upon many aspects of a business'...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York, NY :
Apress,
[2022]
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Intro
- Table of Contents
- About the Author
- About the Technical Reviewer
- Acknowledgments
- Preface
- Chapter 1: Introduction
- 1.1 Data Science
- 1.2 Data Science for Business
- 1.3 Business Analytics Journey
- Events in Real Life and Description
- Capturing the Data
- Accessible Location and Storage
- Extracting Data for Analysis
- Data Analytics
- Summarize and Interpret Results
- Presentation
- Recommendations, Strategies, and Plan
- Implementation
- 1.4 Small and Medium Enterprises (SME)
- 1.5 Business Analytics in Small Business
- 1.6 Types of Analytics Problems in SME
- 1.7 Analytics Tools for SMES
- 1.8 Road Map to This Book
- Using RapidMiner Studio
- Using Gephi
- 1.9 Problems
- 1.10 References
- Chapter 2: Data for Analysis in Small Business
- 2.1 Source of Data
- Data Privacy
- 2.2 Data Quality and Integrity
- 2.3 Data Governance
- 2.4 Data Preparation
- Summary Statistics
- Example 2.1
- Missing Data
- Data Cleaning - Outliers
- Normalization and Categorical Variables
- Handling Categorical Variables
- 2.5 Data Visualization
- 2.6 Problems
- 2.7 References
- Chapter 3: Business Analytics Consulting
- 3.1 Business Analytics Consulting
- 3.2 Managing Analytics Project
- 3.3 Success Metrics in Analytics Project
- 3.4 Billing the Analytics Project
- 3.5 References
- Chapter 4: Business Analytics Consulting Phases
- 4.1 Proposal and Initial Analysis
- 4.2 Pre-engagement Phase
- 4.3 Engagement Phase
- 4.4 Post-Engagement Phase
- 4.5 Problems
- 4.6 References
- Chapter 5: Descriptive Analytics Tools
- 5.1 Introduction
- 5.2 Bar Chart
- 5.3 Histogram
- 5.4 Line Graphs
- 5.5 Boxplots
- 5.6 Scatter Plots
- 5.7 Packed Bubble Charts
- 5.8 Treemaps
- 5.9 Heat Maps
- 5.10 Geographical Maps
- 5.11 A Practical Business Problem I (Simple Descriptive Analytics)
- 5.12 Problems
- 5.13 References
- Chapter 6: Predicting Numerical Outcomes
- 6.1 Introduction
- 6.2 Evaluating Prediction Models
- 6.3 Practical Business Problem II (Sales Prediction)
- 6.4 Multiple Linear Regression
- 6.5 Regression Trees
- 6.6 Neural Network (Prediction)
- 6.7 Conclusion on Sales Prediction
- 6.8 Problems
- 6.9 References
- Chapter 7: Classification Techniques
- 7.1 Classification Models and Evaluation
- 7.2 Practical Business Problem III (Customer Loyalty)
- 7.3 Neural Network
- 7.4 Classification Tree
- 7.5 Random Forest and Boosted Trees
- 7.6 K-Nearest Neighbor
- 7.7 Logistic Regression
- 7.8 Problems
- 7.9 References
- Chapter 8: Advanced Descriptive Analytics
- 8.1 Clustering
- 8.2 K-Means
- 8.3 Practical Business Problem IV (Customer Segmentation)
- 8.4 Association Analysis
- 8.5 Network Analysis
- 8.6 Practical Business Problem V (Staff Efficiency)
- 8.7 Problems
- 8.8 References
- Chapter 9: Case Study Part I
- 9.1 SME Ecommerce
- 9.2 Introduction to SME Case Study