Cargando…

Journey to become a Google Cloud machine learning engineer : build the mind and hand of a Google certified ML professional /

Prepare for the GCP ML certification exam along with exploring cloud computing and machine learning concepts and gaining Google Cloud ML skills. This book aims to provide a study guide to learn and master machine learning in Google Cloud: to build a broad and strong knowledge base, train hands-on sk...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Song, Logan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing Ltd., 2022.
Edición:[First edition].
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright and Credits
  • Dedication
  • Contributors
  • Table of Contents
  • Preface
  • Part 1: Starting with GCP and Python
  • Chapter 1: Comprehending Google Cloud Services
  • Understanding the GCP global infrastructure
  • Getting started with GCP
  • Creating a free-tier GCP account
  • Provisioning our first computer in Google Cloud
  • Provisioning our first storage in Google Cloud
  • Managing resources using GCP Cloud Shell
  • GCP networking
  • virtual private clouds
  • GCP organization structure
  • The GCP resource hierarchy
  • GCP projects
  • GCP Identity and Access Management
  • Authentication
  • Authorization
  • Auditing or accounting
  • Service account
  • GCP compute services
  • GCE virtual machines
  • Load balancers and managed instance groups
  • Containers and Google Kubernetes Engine
  • GCP Cloud Run
  • GCP Cloud Functions
  • GCP storage and database service spectrum
  • GCP storage
  • Google Cloud SQL
  • Google Cloud Spanner
  • Cloud Firestore
  • Google Cloud Bigtable
  • GCP big data and analytics services
  • Google Cloud Dataproc
  • Google Cloud Dataflow
  • Google Cloud BigQuery
  • Google Cloud Pub/Sub
  • GCP artificial intelligence services
  • Google Vertex AI
  • Google Cloud ML APIs
  • Summary
  • Further reading
  • Chapter 2: Mastering Python Programming
  • Technical requirements
  • The basics of Python
  • Basic Python variables and operations
  • Basic Python data structure
  • Python conditions and loops
  • Python functions
  • Opening and closing files in Python
  • An interesting problem
  • Python data libraries and packages
  • NumPy
  • Pandas
  • Matplotlib
  • Seaborn
  • Summary
  • Further reading
  • Part 2: Introducing Machine Learning
  • Chapter 3: Preparing for ML Development
  • Starting from business requirements
  • Defining ML problems
  • Is ML the best solution?
  • ML problem categories
  • ML model inputs and outputs
  • Measuring ML solutions and data readiness
  • ML model performance measurement
  • Data readiness
  • Collecting data
  • Data engineering
  • Data sampling and balancing
  • Numerical value transformation
  • Categorical value transformation
  • Missing value handling
  • Outlier processing
  • Feature engineering
  • Feature selection
  • Feature synthesis
  • Summary
  • Further reading
  • Chapter 4: Developing and Deploying ML Models
  • Splitting the dataset
  • Preparing the platform
  • Training the model
  • Linear regression
  • Binary classification
  • Support vector machine
  • Decision tree and random forest
  • Validating the model
  • Model validation
  • Confusion matrix
  • ROC curve and AUC
  • More classification metrics
  • Tuning the model
  • Overfitting and underfitting
  • Regularization
  • Hyperparameter tuning
  • Testing and deploying the model
  • Practicing model development with scikit-learn
  • Summary
  • Further reading
  • Chapter 5: Understanding Neural Networks and Deep Learning
  • Neural networks and DL
  • The cost function