Cargando…

Deep learning CNN : convolutional neural networks with Python.

Learn Convolution Neural Networks using TensorFlow, CNN for Image Recognition, and CNN for Object Detection. Understand the concepts and methodologies of CNNs with respect to data science with live coding throughout. About This Video Learn from easy-to-understand, exhaustive, expressive, 75+ videos...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : Packt Publishing, [2022]
Edición:[First edition].
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a22000007i 4500
001 OR_on1344342486
003 OCoLC
005 20231017213018.0
006 m o c
007 vz czazuu
007 cr cnannnuuuuu
008 220913s2022 xx 928 o vleng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d OCLCF 
020 |a 9781803243726  |q (electronic video) 
020 |a 1803243724  |q (electronic video) 
029 1 |a AU@  |b 000072790590 
035 |a (OCoLC)1344342486 
037 |a 9781803243726  |b O'Reilly Media 
050 4 |a Q325.73 
082 0 4 |a 006.3/1  |2 23/eng/20220913 
049 |a UAMI 
245 0 0 |a Deep learning CNN :  |b convolutional neural networks with Python. 
250 |a [First edition]. 
264 1 |a [Place of publication not identified] :  |b Packt Publishing,  |c [2022] 
300 |a 1 online resource (1 video file (15 hr., 28 min.)) :  |b sound, color. 
306 |a 152800 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
344 |a digital  |2 rdatr 
347 |a video file  |2 rdaft 
380 |a Instructional films  |2 lcgft 
511 0 |a AI Sciences (Firm), presenter. 
500 |a "Updated in August 2022." 
520 |a Learn Convolution Neural Networks using TensorFlow, CNN for Image Recognition, and CNN for Object Detection. Understand the concepts and methodologies of CNNs with respect to data science with live coding throughout. About This Video Learn from easy-to-understand, exhaustive, expressive, 75+ videos along with detailed code notebooks Structured course with solid basic understanding and moving ahead with the advanced practical concepts Practical explanation and live coding with Python to build your own application In Detail Convolutional Neural Networks (CNNs) are considered game-changers in the field of computer vision, particularly after AlexNet in 2012. They are everywhere now, ranging from audio processing to more advanced reinforcement learning. So, the understanding of CNNs becomes almost inevitable in all fields of data science. With this course, you can take your career to the next level with an expert grip on the concepts and implementations of CNNs in data science. The course starts with introducing and jotting down the importance of Convolutional Neural Networks (CNNs) in data science. You will then look at some classical computer vision techniques such as image processing and object detection. It will be followed by deep neural networks with topics such as perceptron and multi-layered perceptron. Then, you will move ahead with learning in-depth about CNNs. You will first look at the architecture of a CNN, then gradient descent in CNN, get introduced to TensorFlow, classical CNNs, transfer learning, and a case study with YOLO. Finally, you will work on two projects: Neural Style Transfer (using TensorFlow-hub) and Face Verification (using VGGFace2). By the end of this course, you will have understood the methodology of CNNs with data science using real datasets. Apart from this, you will easily be able to relate the concepts and theories in computer vision with CNNs. Audience This course is designed for beginners in data science and deep learning. Any individual who wants to learn CNNs with real datasets in data science, learn CNNs along with its implementation in realistic projects, and master their data speak will gain a lot from this course. No prior knowledge is needed. You start from the basics and slowly build your knowledge of the subject. A willingness to learn and practice is just the prerequisite for this course. 
588 0 |a Online resource; title from title details screen (O'Reilly, viewed September 13, 2022). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Deep learning (Machine learning) 
650 0 |a Python (Computer program language) 
650 7 |a Deep learning (Machine learning)  |2 fast  |0 (OCoLC)fst02032663 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
655 7 |a Instructional films.  |2 fast  |0 (OCoLC)fst01726236 
655 7 |a Internet videos.  |2 fast  |0 (OCoLC)fst01750214 
655 7 |a Nonfiction films.  |2 fast  |0 (OCoLC)fst01710269 
655 7 |a Instructional films.  |2 lcgft 
655 7 |a Nonfiction films.  |2 lcgft 
655 7 |a Internet videos.  |2 lcgft 
710 2 |a AI Sciences (Firm),  |e presenter. 
710 2 |a Packt Publishing,  |e publisher. 
856 4 0 |u https://learning.oreilly.com/videos/~/9781803243726/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP