|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_on1344334628 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
220913s2022 nyua ob 001 0 eng d |
040 |
|
|
|a ORMDA
|b eng
|e rda
|e pn
|c ORMDA
|d EBLCP
|d GW5XE
|d YDX
|d N$T
|d OCLCF
|d YDX
|d OCLCQ
|d K6U
|d OCLCQ
|d VLB
|d OCLCO
|
019 |
|
|
|a 1344323732
|a 1346260257
|a 1354629354
|
020 |
|
|
|a 9781484279120
|q electronic book
|
020 |
|
|
|a 1484279123
|q electronic book
|
020 |
|
|
|z 9781484279113
|
020 |
|
|
|z 1484279115
|
024 |
7 |
|
|a 10.1007/978-1-4842-7912-0
|2 doi
|
029 |
1 |
|
|a AU@
|b 000072790551
|
035 |
|
|
|a (OCoLC)1344334628
|z (OCoLC)1344323732
|z (OCoLC)1346260257
|z (OCoLC)1354629354
|
037 |
|
|
|a 9781484279120
|b O'Reilly Media
|
050 |
|
4 |
|a Q325.5
|b .P35 2022eb
|
082 |
0 |
4 |
|a 006.3/1
|2 23/eng/20220913
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Paluszek, Michael,
|e author.
|
245 |
1 |
0 |
|a Practical MATLAB deep learning :
|b a projects-based approach /
|c Michael Paluszek, Stephanie Thomas and Eric Ham.
|
250 |
|
|
|a Second edition.
|
264 |
|
1 |
|a New York, NY :
|b Apress,
|c [2022]
|
264 |
|
4 |
|c Ã2022
|
300 |
|
|
|a 1 online resource (xix, 329 pages : illustrations)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
0 |
|
|a ITpro collection
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a Harness the power of MATLAB for deep-learning challenges. Practical MATLAB Deep Learning, Second Edition, remains a one-of a-kind book that provides an introduction to deep learning and using MATLAB's deep-learning toolboxes. In this book, you'll see how these toolboxes provide the complete set of functions needed to implement all aspects of deep learning. This edition includes new and expanded projects, and covers generative deep learning and reinforcement learning.
|
505 |
0 |
0 |
|t What Is Deep Learning? --
|t MATLAB Machine learning toolboxes --
|t Findining circles with deep learning --
|t Classifying movies --
|t Algorithmic deep learning --
|t Tokamak disruption detection --
|t Classifying a pirouette --
|t Completing sentences --
|t Terrain-based navigation --
|t Stock prediction --
|t Image classification --
|t Orbit determination --
|t Earth sensors --
|t Generative modeling of music --
|t Reinforcement learning.
|
588 |
|
|
|a Description based on online resource; title from digital title page (viewed on November 08, 2022).
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
630 |
0 |
0 |
|a MATLAB.
|
630 |
0 |
7 |
|a MATLAB
|2 fast
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
7 |
|a Machine learning
|2 fast
|
700 |
1 |
|
|a Thomas, Stephanie J.,
|e author.
|
700 |
1 |
|
|a Ham, Eric,
|e author.
|
776 |
0 |
8 |
|c Original
|z 1484279115
|z 9781484279113
|w (OCoLC)1274198335
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781484279120/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL7084524
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 303114084
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 3380261
|
994 |
|
|
|a 92
|b IZTAP
|