Cargando…

Data quality fundamentals : a practitioner's guide to building trustworthy data pipelines /

Do your product dashboards look funky? Are your quarterly reports stale? Is the data set you're using broken or just plain wrong? These problems affect almost every team, yet they're usually addressed on an ad hoc basis and in a reactive manner. If you answered yes to these questions, this...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Moses, Barr (Autor), Gavish, Lior (Autor), Vorwerck, Molly (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly media, 2022.
Edición:First edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1343312675
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 220905s2022 cau o 001 0 eng d
040 |a YDX  |b eng  |e rda  |c YDX  |d ORMDA  |d OCLCF  |d UKAHL  |d NEHVU  |d N$T  |d OCLCQ  |d OCLCO 
019 |a 1353218309 
020 |a 9781098112011  |q (electronic bk.) 
020 |a 1098112016  |q (electronic bk.) 
020 |z 1098112040 
020 |z 9781098112042 
029 1 |a AU@  |b 000072719295 
035 |a (OCoLC)1343312675  |z (OCoLC)1353218309 
037 |a 9781098112035  |b O'Reilly Media 
050 4 |a QA76.9.D343 
082 0 4 |a 006.3/12  |2 23/eng/20220907 
049 |a UAMI 
100 1 |a Moses, Barr,  |e author. 
245 1 0 |a Data quality fundamentals :  |b a practitioner's guide to building trustworthy data pipelines /  |c Barr Moses, Lior Gavish & Molly Vorwerck. 
250 |a First edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly media,  |c 2022. 
300 |a 1 online resource (xvi, 288 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 |a Online resource; title from PDF title page (EBSCO, viewed December 6, 2022). 
500 |a Includes index. 
520 |a Do your product dashboards look funky? Are your quarterly reports stale? Is the data set you're using broken or just plain wrong? These problems affect almost every team, yet they're usually addressed on an ad hoc basis and in a reactive manner. If you answered yes to these questions, this book is for you. Many data engineering teams today face the "good pipelines, bad data" problem. It doesn't matter how advanced your data infrastructure is if the data you're piping is bad. In this book, Barr Moses, Lior Gavish, and Molly Vorwerck, from the data observability company Monte Carlo, explain how to tackle data quality and trust at scale by leveraging best practices and technologies used by some of the world's most innovative companies. Build more trustworthy and reliable data pipelines Write scripts to make data checks and identify broken pipelines with data observability Learn how to set and maintain data SLAs, SLIs, and SLOs Develop and lead data quality initiatives at your company Learn how to treat data services and systems with the diligence of production software Automate data lineage graphs across your data ecosystem Build anomaly detectors for your critical data assets. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Data mining. 
650 6 |a Exploration de données (Informatique) 
650 7 |a Data mining  |2 fast 
700 1 |a Gavish, Lior,  |e author. 
700 1 |a Vorwerck, Molly,  |e author. 
776 0 8 |i Print version:  |z 1098112040  |z 9781098112042  |w (OCoLC)1304247758 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781098112035/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH40652306 
938 |a YBP Library Services  |b YANK  |n 18105280 
938 |a YBP Library Services  |b YANK  |n 303109475 
938 |a EBSCOhost  |b EBSC  |n 3374752 
994 |a 92  |b IZTAP