Cargando…

Data cleaning and exploration with machine learning : get to grips with machine learning techniques to achieve sparkling-clean data quickly /

Explore supercharged machine learning techniques to take care of your data laundry loads Key Features Learn how to prepare data for machine learning processes Understand which algorithms are based on prediction objectives and the properties of the data Explore how to interpret and evaluate the resul...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Walker, Michael
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited, 2022.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007i 4500
001 OR_on1341444522
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 220820s2022 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d ORMDA  |d OCLCQ  |d OCLCF  |d N$T  |d UKMGB  |d YDX  |d OCLCQ  |d TEFOD  |d NWQ  |d OCLCO 
015 |a GBC2C8506  |2 bnb 
016 7 |a 020684958  |2 Uk 
019 |a 1346261244 
020 |a 9781803245911  |q electronic book 
020 |a 1803245913  |q electronic book 
020 |z 1803241675 
020 |z 9781803241678 
029 1 |a UKMGB  |b 020684958 
035 |a (OCoLC)1341444522  |z (OCoLC)1346261244 
037 |a 9781803241678  |b O'Reilly Media 
037 |a BE2713DA-6E54-462F-8C59-A85BC24BF0FD  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.9.D343  |b W35 2022 
082 0 4 |a 006.3/12  |2 23/eng/20220830 
049 |a UAMI 
100 1 |a Walker, Michael. 
245 1 0 |a Data cleaning and exploration with machine learning :  |b get to grips with machine learning techniques to achieve sparkling-clean data quickly /  |c Michael Walker. 
264 1 |a Birmingham :  |b Packt Publishing, Limited,  |c 2022. 
300 |a 1 online resource (542 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 0 |g Section 1:  |t Data Cleaning and Machine Learning Algorithms --  |t Examining the Distribution of Features and Targets --  |t Examining Bivariate and Multivariate Relationships between Features and Targets --  |t Identifying and Fixing Missing Values --  |g Section 2:  |t Preprocessing, Feature Selection, and Sampling --  |t Encoding, Transforming, and Scaling Features --  |t Feature Selection --  |t Preparing for Model Evaluation --  |g Section 3:  |t Modeling Continuous Targets with Supervised Learning --  |t Linear Regression Models --  |t Support Vector Regression --  |t K-Nearest Neighbors, Decision Tree, Random Forest, and Gradient Boosted Regression --  |g Section 4:  |t Modeling Dichotomous and Multiclass Targets with Supervised Learning --  |t Logistic Regression --  |t Decision Trees and Random Forest Classification --  |t K-Nearest Neighbors for Classification --  |t Support Vector Machine Classification --  |t Naïve Bayes Classification --  |g Section 5:  |t Clustering and Dimensionality Reduction with Unsupervised Learning --  |t Principal Component Analysis --  |t K-Means and DBSCAN Clustering. 
520 |a Explore supercharged machine learning techniques to take care of your data laundry loads Key Features Learn how to prepare data for machine learning processes Understand which algorithms are based on prediction objectives and the properties of the data Explore how to interpret and evaluate the results from machine learning Book Description Many individuals who know how to run machine learning algorithms do not have a good sense of the statistical assumptions they make and how to match the properties of the data to the algorithm for the best results. As you start with this book, models are carefully chosen to help you grasp the underlying data, including in-feature importance and correlation, and the distribution of features and targets. The first two parts of the book introduce you to techniques for preparing data for ML algorithms, without being bashful about using some ML techniques for data cleaning, including anomaly detection and feature selection. The book then helps you apply that knowledge to a wide variety of ML tasks. You'll gain an understanding of popular supervised and unsupervised algorithms, how to prepare data for them, and how to evaluate them. Next, you'll build models and understand the relationships in your data, as well as perform cleaning and exploration tasks with that data. You'll make quick progress in studying the distribution of variables, identifying anomalies, and examining bivariate relationships, as you focus more on the accuracy of predictions in this book. By the end of this book, you'll be able to deal with complex data problems using unsupervised ML algorithms like principal component analysis and k-means clustering. What you will learn Explore essential data cleaning and exploration techniques to be used before running the most popular machine learning algorithms Understand how to perform preprocessing and feature selection, and how to set up the data for testing and validation Model continuous targets with supervised learning algorithms Model binary and multiclass targets with supervised learning algorithms Execute clustering and dimension reduction with unsupervised learning algorithms Understand how to use regression trees to model a continuous target Who this book is for This book is for professional data scientists, particularly those in the first few years of their career, or more experienced analysts who are relatively new to machine learning. Readers should have prior knowledge of concepts in statistics typically taught in an undergraduate introductory course as well as beginner-level experience in manipulating data programmatically. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Data mining. 
650 0 |a Machine learning. 
650 6 |a Exploration de données (Informatique) 
650 6 |a Apprentissage automatique. 
650 7 |a Data mining  |2 fast 
650 7 |a Machine learning  |2 fast 
776 0 8 |i Print version:  |a Walker, Michael.  |t Data Cleaning and Exploration with Machine Learning.  |d Birmingham : Packt Publishing, Limited, ©2022 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781803241678/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7072621 
938 |a EBSCOhost  |b EBSC  |n 3347619 
994 |a 92  |b IZTAP