Cargando…

Codeless time series analysis with KNIME : a practical guide to implementing forecasting models for time series analysis applications /

Perform time series analysis using KNIME Analytics Platform, covering both statistical methods and machine learning-based methods Key Features Gain a solid understanding of time series analysis and its applications using KNIME Learn how to apply popular statistical and machine learning time series a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Weisinger, Corey (Autor), Widmann, Maarit (Autor), Tonini, Daniele (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited, 2022.
Edición:Community edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1341443844
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 220820s2022 enk ob 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d ORMDA  |d OCLCQ  |d OCLCF  |d OCLCQ  |d OCLCO 
020 |a 9781803239972 
020 |a 1803239972 
035 |a (OCoLC)1341443844 
037 |a 9781803232065  |b O'Reilly Media 
050 4 |a QA76.9.D343 
082 0 4 |a 005.7/2  |2 23/eng/20220823 
049 |a UAMI 
100 1 |a Weisinger, Corey,  |e author. 
245 1 0 |a Codeless time series analysis with KNIME :  |b a practical guide to implementing forecasting models for time series analysis applications /  |c Corey Weisinger, Maarit Widmann, Daniele Tonini. 
250 |a Community edition. 
260 |a Birmingham :  |b Packt Publishing, Limited,  |c 2022. 
300 |a 1 online resource (392 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
504 |a Includes bibliographical references. 
520 |a Perform time series analysis using KNIME Analytics Platform, covering both statistical methods and machine learning-based methods Key Features Gain a solid understanding of time series analysis and its applications using KNIME Learn how to apply popular statistical and machine learning time series analysis techniques Integrate other tools such as Spark, H2O, and Keras with KNIME within the same application Book Description This book will take you on a practical journey, teaching you how to implement solutions for many use cases involving time series analysis techniques. This learning journey is organized in a crescendo of difficulty, starting from the easiest yet effective techniques applied to weather forecasting, then introducing ARIMA and its variations, moving on to machine learning for audio signal classification, training deep learning architectures to predict glucose levels and electrical energy demand, and ending with an approach to anomaly detection in IoT. There's no time series analysis book without a solution for stock price predictions and you'll find this use case at the end of the book, together with a few more demand prediction use cases that rely on the integration of KNIME Analytics Platform and other external tools. By the end of this time series book, you'll have learned about popular time series analysis techniques and algorithms, KNIME Analytics Platform, its time series extension, and how to apply both to common use cases. What you will learn Install and configure KNIME time series integration Implement common preprocessing techniques before analyzing data Visualize and display time series data in the form of plots and graphs Separate time series data into trends, seasonality, and residuals Train and deploy FFNN and LSTM to perform predictive analysis Use multivariate analysis by enabling GPU training for neural networks Train and deploy an ML-based forecasting model using Spark and H2O Who this book is for This book is for data analysts and data scientists who want to develop forecasting applications on time series data. While no coding skills are required thanks to the codeless implementation of the examples, basic knowledge of KNIME Analytics Platform is assumed. The first part of the book targets beginners in time series analysis, and the subsequent parts of the book challenge both beginners as well as advanced users by introducing real-world time series applications. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Data mining. 
650 0 |a Quantitative research. 
650 0 |a Open source software. 
650 6 |a Exploration de données (Informatique) 
650 6 |a Recherche quantitative. 
650 6 |a Logiciels libres. 
650 7 |a Data mining  |2 fast 
650 7 |a Open source software  |2 fast 
650 7 |a Quantitative research  |2 fast 
700 1 |a Widmann, Maarit,  |e author. 
700 1 |a Tonini, Daniele,  |e author. 
776 0 8 |i Print version:  |a Weisinger, Corey.  |t Codeless Time Series Analysis with KNIME.  |d Birmingham : Packt Publishing, Limited, ©2022 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781803232065/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7072635 
994 |a 92  |b IZTAP