Cargando…

Machine learning on geographical data using Python : introduction into geodata with applications and use cases /

Get up and running with the basics of geographic information systems (GIS), geospatial analysis, and machine learning on spatial data in Python. This book starts with an introduction to geodata and covers topics such as GIS and common tools, standard formats of geographical data, and an overview of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Korstanje, Joos (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Apress, 2023.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1336986830
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 220724s2023 nyua o 000 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d ORMDA  |d GW5XE  |d OCLCF  |d N$T  |d OCLCQ  |d CON 
020 |a 9781484282878  |q (electronic bk.) 
020 |a 1484282876  |q (electronic bk.) 
020 |z 9781484282861 
020 |z 1484282868 
024 7 |a 10.1007/978-1-4842-8287-8  |2 doi 
029 1 |a AU@  |b 000072301740 
035 |a (OCoLC)1336986830 
037 |a 9781484282878  |b O'Reilly Media 
050 4 |a QA76.73.P98 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 005.13/3  |2 23/eng/20220727 
049 |a UAMI 
100 1 |a Korstanje, Joos,  |e author. 
245 1 0 |a Machine learning on geographical data using Python :  |b introduction into geodata with applications and use cases /  |c Joos Korstanje. 
264 1 |a New York, NY :  |b Apress,  |c 2023. 
300 |a 1 online resource (xv, 312 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Get up and running with the basics of geographic information systems (GIS), geospatial analysis, and machine learning on spatial data in Python. This book starts with an introduction to geodata and covers topics such as GIS and common tools, standard formats of geographical data, and an overview of Python tools for geodata. Specifics and difficulties one may encounter when using geographical data are discussed: from coordinate systems and map projections to different geodata formats and types such as points, lines, polygons, and rasters. Analytics operations typically applied to geodata are explained such as clipping, intersecting, buffering, merging, dissolving, and erasing, with implementations in Python. Use cases and examples are included. The book also focuses on applying more advanced machine learning approaches to geographical data and presents interpolation, classification, regression, and clustering via examples and use cases. This book is your go-to resource for machine learning on geodata. It presents the basics of working with spatial data and advanced applications. Examples are presented using code (accessible at github.com/Apress/machine-learning-geographic-data-python) and facilitate learning by application. What You Will Learn Understand the fundamental concepts of working with geodata Work with multiple geographical data types and file formats in Python Create maps in Python Apply machine learning on geographical data Who This Book Is For Readers with a basic understanding of machine learning who wish to extend their skill set to analysis of and machine learning on spatial data while remaining in a common data science Python environment. 
505 0 |a Chapter 1: Introduction to Geodata -- Chapter 2: Coordinate Systems and Projections -- Chapter 3: Geodata Data Types: Points, Lines, Polygons, Raster -- Chapter 4: Creating Maps -- Chapter 5: Basic Operations 1: Clipping and Intersecting in Python -- Chapter 6: Basic Operations 2: Buffering in Python -- Chapter 7: Basic Operations 3: Merge and Dissolve in Python -- Chapter 8: Basic Operations 4: Erase in Python -- Chapter 9: Machine Learning: Interpolation -- Chapter 10: Machine Learning: Classification -- Chapter 11: Machine Learning: Regression -- Chapter 12: Machine Learning: Clustering -- Chapter 13: Conclusion. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed August 1, 2022). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 0 |a Geodatabases. 
650 7 |a Geodatabases.  |2 fast  |0 (OCoLC)fst01736057 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
776 0 8 |i Print version:  |z 1484282868  |z 9781484282861  |w (OCoLC)1322048353 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484282878/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 303038147 
938 |a EBSCOhost  |b EBSC  |n 3338951 
994 |a 92  |b IZTAP