Cargando…

Interpretable AI : building explainable machine learning systems /

AI doesn’t have to be a black box. These practical techniques help shine a light on your model’s mysterious inner workings. Make your AI more transparent, and you’ll improve trust in your results, combat data leakage and bias, and ensure compliance with legal require...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Thampi, Ajay (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Shelter Island, NY : Manning Publications Co., [2022]
Edición:[First edition].
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007i 4500
001 OR_on1335127400
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 220712s2022 nyua o 001 0 eng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d OCLCF  |d N$T  |d OCLCQ  |d CON 
019 |a 1365390855 
020 |a 9781617297649  |q (electronic bk.) 
020 |a 161729764X  |q (electronic bk.) 
020 |a 9781638350422  |q (electronic bk.) 
020 |a 1638350426  |q (electronic bk.) 
029 1 |a AU@  |b 000072282649 
035 |a (OCoLC)1335127400  |z (OCoLC)1365390855 
037 |a 9781617297649  |b O'Reilly Media 
050 4 |a Q325.5 
082 0 4 |a 006.3/1  |2 23/eng/20220712 
049 |a UAMI 
100 1 |a Thampi, Ajay,  |e author. 
245 1 0 |a Interpretable AI :  |b building explainable machine learning systems /  |c Ajay Thampi. 
246 3 |a Interpretable artificial intelligence 
250 |a [First edition]. 
264 1 |a Shelter Island, NY :  |b Manning Publications Co.,  |c [2022] 
300 |a 1 online resource (328 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
520 |a AI doesn’t have to be a black box. These practical techniques help shine a light on your model’s mysterious inner workings. Make your AI more transparent, and you’ll improve trust in your results, combat data leakage and bias, and ensure compliance with legal requirements. Interpretable AI opens up the black box of your AI models. It teaches cutting-edge techniques and best practices that can make even complex AI systems interpretable. Each method is easy to implement with just Python and open source libraries. You’ll learn to identify when you can utilize models that are inherently transparent, and how to mitigate opacity when your problem demands the power of a hard-to-interpret deep learning model. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 0 |a Python (Computer program language) 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781617297649/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a EBSCOhost  |b EBSC  |n 3292824 
994 |a 92  |b IZTAP