Cargando…

Simplifying Data Engineering and Analytics with Delta : Create Analytics-Ready Data That Fuels Artificial Intelligence and Business Intelligence /

Explore how Delta brings reliability, performance, and governance to your data lake and all the AI and BI use cases built on top of it Key Features Learn Delta's core concepts and features as well as what makes it a perfect match for data engineering and analysis Solve business challenges of di...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mahapatra, Anindita
Otros Autores: May, Doug
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited, 2022.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007i 4500
001 OR_on1334888420
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 220709s2022 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d ORMDA  |d OCLCQ  |d OCLCF  |d N$T  |d UKMGB  |d UKAHL  |d OCLCQ  |d YDX  |d IEEEE  |d OCLCO 
015 |a GBC2B2929  |2 bnb 
016 7 |a 020661673  |2 Uk 
019 |a 1378176870 
020 |a 9781801810715  |q electronic book 
020 |a 1801810710  |q electronic book 
020 |z 9781801814867  |q paperback 
020 |z 1801814864 
029 1 |a AU@  |b 000072329632 
029 1 |a UKMGB  |b 020661673 
035 |a (OCoLC)1334888420  |z (OCoLC)1378176870 
037 |a 9781801814867  |b O'Reilly Media 
037 |a 10163532  |b IEEE 
050 4 |a QA76.9.D3  |b M34 2022 
082 0 4 |a 006.3/12  |2 23/eng/20220802 
049 |a UAMI 
100 1 |a Mahapatra, Anindita. 
245 1 0 |a Simplifying Data Engineering and Analytics with Delta :  |b Create Analytics-Ready Data That Fuels Artificial Intelligence and Business Intelligence /  |c Anindita Mahapatra. 
264 1 |a Birmingham :  |b Packt Publishing, Limited,  |c 2022. 
300 |a 1 online resource (335 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Explore how Delta brings reliability, performance, and governance to your data lake and all the AI and BI use cases built on top of it Key Features Learn Delta's core concepts and features as well as what makes it a perfect match for data engineering and analysis Solve business challenges of different industry verticals using a scenario-based approach Make optimal choices by understanding the various tradeoffs provided by Delta Book Description Delta helps you generate reliable insights at scale and simplifies architecture around data pipelines, allowing you to focus primarily on refining the use cases being worked on. This is especially important when you consider that existing architecture is frequently reused for new use cases. In this book, you'll learn about the principles of distributed computing, data modeling techniques, and big data design patterns and templates that help solve end-to-end data flow problems for common scenarios and are reusable across use cases and industry verticals. You'll also learn how to recover from errors and the best practices around handling structured, semi-structured, and unstructured data using Delta. After that, you'll get to grips with features such as ACID transactions on big data, disciplined schema evolution, time travel to help rewind a dataset to a different time or version, and unified batch and streaming capabilities that will help you build agile and robust data products. By the end of this Delta book, you'll be able to use Delta as the foundational block for creating analytics-ready data that fuels all AI/BI use cases. What you will learn Explore the key challenges of traditional data lakes Appreciate the unique features of Delta that come out of the box Address reliability, performance, and governance concerns using Delta Analyze the open data format for an extensible and pluggable architecture Handle multiple use cases to support BI, AI, streaming, and data discovery Discover how common data and machine learning design patterns are executed on Delta Build and deploy data and machine learning pipelines at scale using Delta Who this book is for Data engineers, data scientists, ML practitioners, BI analysts, or anyone in the data domain working with big data will be able to put their knowledge to work with this practical guide to executing pipelines and supporting diverse use cases using the Delta protocol. Basic knowledge of SQL, Python programming, and Spark is required to get the most out of this book. 
505 0 |a Table of Contents An Introduction to Data Engineering Data Modeling and ETL Delta – The Foundation Block for Big Data Unifying Batch and Streaming with Delta Data Consolidation in Delta Lake Solving Common Data Pattern Scenarios with Delta Delta for Data Warehouse Use Cases Handling Atypical Data Scenarios with Delta Delta for Reproducible Machine Learning Pipelines Delta for Data Products and Services Operationalizing Data and ML Pipelines Optimizing Cost and Performance with Delta Managing Your Data Journey. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Database management. 
650 0 |a Data mining. 
650 0 |a Big data. 
650 0 |a Business  |x Data processing. 
650 6 |a Bases de données  |x Gestion. 
650 6 |a Exploration de données (Informatique) 
650 6 |a Données volumineuses. 
650 6 |a Gestion  |x Informatique. 
650 7 |a Big data  |2 fast 
650 7 |a Business  |x Data processing  |2 fast 
650 7 |a Data mining  |2 fast 
650 7 |a Database management  |2 fast 
700 1 |a May, Doug. 
776 0 8 |i Print version:  |a Mahapatra, Anindita.  |t Simplifying Data Engineering and Analytics with Delta.  |d Birmingham : Packt Publishing, Limited, ©2022 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781801814867/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH40296599 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7029036 
938 |a EBSCOhost  |b EBSC  |n 3324225 
938 |a YBP Library Services  |b YANK  |n 303006773 
994 |a 92  |b IZTAP