Applied machine learning explainability techniques : make ML models explainable and trustworthy for practical applications using LIME, SHAP, and more /
Leverage top XAI frameworks to explain your machine learning models with ease and discover best practices and guidelines to build scalable explainable ML systems Key Features Explore various explainability methods for designing robust and scalable explainable ML systems Use XAI frameworks such as LI...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | Bhattacharya, Aditya (Autor) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Birmingham :
Packt Publishing, Limited,
[2022].
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Ejemplares similares
-
Practicing Trustworthy Machine Learning : consistent, transparent, and fair AI pipelines /
por: Pruksachatkun, Yada, et al.
Publicado: (2022) -
Machine learning bookcamp /
por: Grigoriev, Alexey
Publicado: (2021) -
Grokking machine learning /
por: Serrano, Luis G.
Publicado: (2021) -
Grokking Machine Learning.
por: Serrano, Luis G.
Publicado: (2021) -
Machine Learning with Spark and Python : Essential Techniques for Predictive Analytics /
por: Bowles, Michael
Publicado: (2019)