|
|
|
|
LEADER |
00000cam a2200000Ii 4500 |
001 |
OR_on1333434850 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
220628s2022 nyua o 001 0 eng d |
040 |
|
|
|a ORMDA
|b eng
|e rda
|e pn
|c ORMDA
|d GW5XE
|d YDX
|d EBLCP
|d YDX
|d OCLCF
|d NWQ
|d N$T
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1333080227
|a 1346260299
|
020 |
|
|
|a 9781484281550
|q (electronic bk.)
|
020 |
|
|
|a 1484281551
|q (electronic bk.)
|
020 |
|
|
|z 9781484281543
|
020 |
|
|
|z 1484281543
|
024 |
7 |
|
|a 10.1007/978-1-4842-8155-0
|2 doi
|
029 |
1 |
|
|a AU@
|b 000072141956
|
029 |
1 |
|
|a AU@
|b 000072394328
|
035 |
|
|
|a (OCoLC)1333434850
|z (OCoLC)1333080227
|z (OCoLC)1346260299
|
037 |
|
|
|a 9781484281550
|b O'Reilly Media
|
050 |
|
4 |
|a QA276.45.R3
|
072 |
|
7 |
|a UMC
|2 bicssc
|
072 |
|
7 |
|a COM051010
|2 bisacsh
|
072 |
|
7 |
|a UMC
|2 thema
|
082 |
0 |
4 |
|a 519.50285/536
|2 23/eng/20220628
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Mailund, Thomas,
|e author.
|
245 |
1 |
0 |
|a Beginning data science in R 4 :
|b data analysis, visualization, and modelling for the data scientist /
|c Thomas Mailund.
|
250 |
|
|
|a 2nd ed..
|
264 |
|
1 |
|a New York, New York :
|b Apress,
|c [2022]
|
300 |
|
|
|a 1 online resource (528 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Includes index.
|
520 |
|
|
|a Discover best practices for data analysis and software development in R and start on the path to becoming a fully-fledged data scientist. Updated for the R 4.0 release, this book teaches you techniques for both data manipulation and visualization and shows you the best way for developing new software packages for R. Beginning Data Science in R 4, Second Edition details how data science is a combination of statistics, computational science, and machine learning. You'll see how to efficiently structure and mine data to extract useful patterns and build mathematical models. This requires computational methods and programming, and R is an ideal programming language for this. Modern data analysis requires computational skills and usually a minimum of programming. After reading and using this book, you'll have what you need to get started with R programming with data science applications. Source code will be available to support your next projects as well.
|
505 |
0 |
|
|a 1: Introduction -- 2: Introduction to R Programming -- 3: Reproducible Analysis -- 4: Data Manipulation -- 5: Visualizing Data -- 6: Working with Large Data Sets -- 7: Supervised Learning -- 8: Unsupervised Learning -- 9: Project 1: Hitting the Bottle -- 10: Deeper into R Programming -- 11: Working with Vectors and Lists -- 12: Functional Programming -- 13: Object-Oriented Programming -- 14: Building an R Package -- 15: Testing and Package Checking -- 16: Version Control -- 17: Profiling and Optimizing -- 18: Project 2: Bayesian Linear Progression -- 19: Conclusions.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a R (Computer program language)
|
650 |
|
0 |
|a Statistics
|x Data processing.
|
650 |
|
6 |
|a R (Langage de programmation)
|
650 |
|
6 |
|a Statistique
|x Informatique.
|
650 |
|
7 |
|a R (Computer program language)
|2 fast
|
650 |
|
7 |
|a Statistics
|x Data processing
|2 fast
|
776 |
0 |
8 |
|c Original
|z 1484281543
|z 9781484281543
|w (OCoLC)1302576988
|
776 |
0 |
8 |
|i Print Version:
|a Mailund, Thomas.
|t Beginning data science in R 4: data analysis, visualization, and modelling for the data scientist.
|d New York : Apress, 2022
|z 9781484281543
|w (OCoLC)1302576988
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781484281550/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL7021726
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 302986968
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 3317531
|
994 |
|
|
|a 92
|b IZTAP
|