Cargando…

Beginning data science in R 4 : data analysis, visualization, and modelling for the data scientist /

Discover best practices for data analysis and software development in R and start on the path to becoming a fully-fledged data scientist. Updated for the R 4.0 release, this book teaches you techniques for both data manipulation and visualization and shows you the best way for developing new softwar...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mailund, Thomas (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, New York : Apress, [2022]
Edición:2nd ed..
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_on1333434850
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 220628s2022 nyua o 001 0 eng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d GW5XE  |d YDX  |d EBLCP  |d YDX  |d OCLCF  |d NWQ  |d N$T  |d OCLCQ  |d OCLCO 
019 |a 1333080227  |a 1346260299 
020 |a 9781484281550  |q (electronic bk.) 
020 |a 1484281551  |q (electronic bk.) 
020 |z 9781484281543 
020 |z 1484281543 
024 7 |a 10.1007/978-1-4842-8155-0  |2 doi 
029 1 |a AU@  |b 000072141956 
029 1 |a AU@  |b 000072394328 
035 |a (OCoLC)1333434850  |z (OCoLC)1333080227  |z (OCoLC)1346260299 
037 |a 9781484281550  |b O'Reilly Media 
050 4 |a QA276.45.R3 
072 7 |a UMC  |2 bicssc 
072 7 |a COM051010  |2 bisacsh 
072 7 |a UMC  |2 thema 
082 0 4 |a 519.50285/536  |2 23/eng/20220628 
049 |a UAMI 
100 1 |a Mailund, Thomas,  |e author. 
245 1 0 |a Beginning data science in R 4 :  |b data analysis, visualization, and modelling for the data scientist /  |c Thomas Mailund. 
250 |a 2nd ed.. 
264 1 |a New York, New York :  |b Apress,  |c [2022] 
300 |a 1 online resource (528 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
520 |a Discover best practices for data analysis and software development in R and start on the path to becoming a fully-fledged data scientist. Updated for the R 4.0 release, this book teaches you techniques for both data manipulation and visualization and shows you the best way for developing new software packages for R. Beginning Data Science in R 4, Second Edition details how data science is a combination of statistics, computational science, and machine learning. You'll see how to efficiently structure and mine data to extract useful patterns and build mathematical models. This requires computational methods and programming, and R is an ideal programming language for this. Modern data analysis requires computational skills and usually a minimum of programming. After reading and using this book, you'll have what you need to get started with R programming with data science applications. Source code will be available to support your next projects as well. 
505 0 |a 1: Introduction -- 2: Introduction to R Programming -- 3: Reproducible Analysis -- 4: Data Manipulation -- 5: Visualizing Data -- 6: Working with Large Data Sets -- 7: Supervised Learning -- 8: Unsupervised Learning -- 9: Project 1: Hitting the Bottle -- 10: Deeper into R Programming -- 11: Working with Vectors and Lists -- 12: Functional Programming -- 13: Object-Oriented Programming -- 14: Building an R Package -- 15: Testing and Package Checking -- 16: Version Control -- 17: Profiling and Optimizing -- 18: Project 2: Bayesian Linear Progression -- 19: Conclusions. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a R (Computer program language) 
650 0 |a Statistics  |x Data processing. 
650 6 |a R (Langage de programmation) 
650 6 |a Statistique  |x Informatique. 
650 7 |a R (Computer program language)  |2 fast 
650 7 |a Statistics  |x Data processing  |2 fast 
776 0 8 |c Original  |z 1484281543  |z 9781484281543  |w (OCoLC)1302576988 
776 0 8 |i Print Version:  |a Mailund, Thomas.  |t Beginning data science in R 4: data analysis, visualization, and modelling for the data scientist.  |d New York : Apress, 2022  |z 9781484281543  |w (OCoLC)1302576988 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484281550/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7021726 
938 |a YBP Library Services  |b YANK  |n 302986968 
938 |a EBSCOhost  |b EBSC  |n 3317531 
994 |a 92  |b IZTAP