Practical Deep Learning at Scale with MLflow : Bridge the Gap Between Offline Experimentation and Online Production /
Train, test, run, track, store, tune, deploy, and explain provenance-aware deep learning models and pipelines at scale with reproducibility using MLflow Key Features Focus on deep learning models and MLflow to develop practical business AI solutions at scale Ship deep learning pipelines from experim...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | Liu, Yong |
Otros Autores: | Zaharia, Matei |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Birmingham :
Packt Publishing, Limited,
2022.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Ejemplares similares
-
Machine learning engineering with MLflow manage the end-to-end machine learning lifecycle with MLflow /
por: Lauchande, Natu
Publicado: (2021) -
Deep learning pipeline : building a deep learning model with TensorFlow /
por: El-Amir, Hisham
Publicado: (2020) -
Beginning MLOps with MLFlow : deploy models in AWS SageMaker, Google Cloud, and Microsoft Azure /
por: Alla, Sridhar, et al.
Publicado: (2021) -
Deep learning : computer vision for beginners using PyTorch.
Publicado: (2023) -
Practical MATLAB deep learning : a projects-based approach /
por: Paluszek, Michael, et al.
Publicado: (2022)