Cargando…

Automated deep learning using neural network intelligence : develop and design PyTorch and TensorFlow models using Python /

Optimize, develop, and design PyTorch and TensorFlow models for a specific problem using the Microsoft Neural Network Intelligence (NNI) toolkit. This book includes practical examples illustrating automated deep learning approaches and provides techniques to facilitate your deep learning model devel...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gridin, Ivan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Apress, [2022]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_on1332779497
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 220625s2022 nyua o 001 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d GW5XE  |d EBLCP  |d OCLCF  |d N$T  |d UPM  |d OCLCQ  |d TEF 
019 |a 1333081700 
020 |a 9781484281499  |q (electronic bk.) 
020 |a 1484281497  |q (electronic bk.) 
020 |z 9781484281482 
020 |z 1484281489 
024 7 |a 10.1007/978-1-4842-8149-9  |2 doi 
029 1 |a AU@  |b 000072141919 
029 1 |a AU@  |b 000072392670 
035 |a (OCoLC)1332779497  |z (OCoLC)1333081700 
050 4 |a Q325.73 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3/1  |2 23/eng/20220706 
049 |a UAMI 
100 1 |a Gridin, Ivan,  |e author. 
245 1 0 |a Automated deep learning using neural network intelligence :  |b develop and design PyTorch and TensorFlow models using Python /  |c Ivan Gridin. 
264 1 |a New York, NY :  |b Apress,  |c [2022] 
264 4 |c Ã2022 
300 |a 1 online resource :  |b illustrations (chiefly color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
520 |a Optimize, develop, and design PyTorch and TensorFlow models for a specific problem using the Microsoft Neural Network Intelligence (NNI) toolkit. This book includes practical examples illustrating automated deep learning approaches and provides techniques to facilitate your deep learning model development. The first chapters of this book cover the basics of NNI toolkit usage and methods for solving hyper-parameter optimization tasks. You will understand the black-box function maximization problem using NNI, and know how to prepare a TensorFlow or PyTorch model for hyper-parameter tuning, launch an experiment, and interpret the results. The book dives into optimization tuners and the search algorithms they are based on: Evolution search, Annealing search, and the Bayesian Optimization approach. The Neural Architecture Search is covered and you will learn how to develop deep learning models from scratch. Multi-trial and one-shot searching approaches of automatic neural network design are presented. The book teaches you how to construct a search space and launch an architecture search using the latest state-of-the-art exploration strategies: Efficient Neural Architecture Search (ENAS) and Differential Architectural Search (DARTS). You will learn how to automate the construction of a neural network architecture for a particular problem and dataset. The book focuses on model compression and feature engineering methods that are essential in automated deep learning. It also includes performance techniques that allow the creation of large-scale distributive training platforms using NNI. After reading this book, you will know how to use the full toolkit of automated deep learning methods. The techniques and practical examples presented in this book will allow you to bring your neural network routines to a higher level. What You Will Learn Know the basic concepts of optimization tuners, search space, and trials Apply different hyper-parameter optimization algorithms to develop effective neural networks Construct new deep learning models from scratch Execute the automated Neural Architecture Search to create state-of-the-art deep learning models Compress the model to eliminate unnecessary deep learning layers. 
505 0 |a Chapter 1: Introduction to Neural Network Intelligence -- Chapter 2:Hyperparameter Optimization -- Chapter 3: Hyperparameter Optimization Under Shell -- 4. Multi-Trial Neural Architecture Search -- Chapter 5: One-Shot Neural Architecture Search -- Chapter 6: Model Pruning -- Chapter 7: NNI Recipes. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed July 6, 2022). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Deep learning (Machine learning) 
650 0 |a Neural networks (Computer science) 
650 0 |a Python (Computer program language) 
650 7 |a Deep learning (Machine learning)  |2 fast  |0 (OCoLC)fst02032663 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
776 0 8 |i Print version:  |z 1484281489  |z 9781484281482  |w (OCoLC)1302579224 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781264286362/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484281499/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 302985319 
938 |a YBP Library Services  |b YANK  |n 302985319 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7020107 
938 |a EBSCOhost  |b EBSC  |n 3314438 
994 |a 92  |b IZTAP