Cargando…

Machine learning on Kubernetes : a practical handbook for building and using a complete open source machine learning platform on Kubernetes /

Build a Kubernetes-based self-serving, agile data science and machine learning ecosystem for your organization using reliable and secure open source technologies Key Features Build a complete machine learning platform on Kubernetes Improve the agility and velocity of your team by adopting the self-s...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Masood, Faisal (Autor), Brigoli, Ross (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2022.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000001i 4500
001 OR_on1328022045
003 OCoLC
005 20231017213018.0
006 m d
007 cr |||||||||||
008 220518s2022 enk o 000 0 eng d
040 |a UKMGB  |b eng  |e rda  |e pn  |c UKMGB  |d ORMDA  |d OCLCF  |d N$T  |d EBLCP  |d OCLCQ  |d IEEEE  |d OCLCO 
015 |a GBC293022  |2 bnb 
016 7 |a 020624341  |2 Uk 
020 |a 1803231653 
020 |a 9781803231655  |q (electronic bk.) 
020 |z 9781803241807 (pbk.) 
029 0 |a UKMGB  |b 020624341 
035 |a (OCoLC)1328022045 
037 |a 9781803231655  |b Packt Publishing Pvt. Ltd 
037 |a 9781803241807  |b O'Reilly Media 
037 |a 10162846  |b IEEE 
050 4 |a Q325.5 
082 0 4 |a 006.3/1  |2 23/eng/20220706 
049 |a UAMI 
100 1 |a Masood, Faisal,  |e author. 
245 1 0 |a Machine learning on Kubernetes :  |b a practical handbook for building and using a complete open source machine learning platform on Kubernetes /  |c Faisal Masood, Ross Brigoli. 
264 1 |a Birmingham :  |b Packt Publishing,  |c 2022. 
300 |a 1 online resource 
336 |a text  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
588 |a Description based on CIP data; resource not viewed. 
520 |a Build a Kubernetes-based self-serving, agile data science and machine learning ecosystem for your organization using reliable and secure open source technologies Key Features Build a complete machine learning platform on Kubernetes Improve the agility and velocity of your team by adopting the self-service capabilities of the platform Reduce time-to-market by automating data pipelines and model training and deployment Book Description MLOps is an emerging field that aims to bring repeatability, automation, and standardization of the software engineering domain to data science and machine learning engineering. By implementing MLOps with Kubernetes, data scientists, IT professionals, and data engineers can collaborate and build machine learning solutions that deliver business value for their organization. You'll begin by understanding the different components of a machine learning project. Then, you'll design and build a practical end-to-end machine learning project using open source software. As you progress, you'll understand the basics of MLOps and the value it can bring to machine learning projects. You will also gain experience in building, configuring, and using an open source, containerized machine learning platform. In later chapters, you will prepare data, build and deploy machine learning models, and automate workflow tasks using the same platform. Finally, the exercises in this book will help you get hands-on experience in Kubernetes and open source tools, such as JupyterHub, MLflow, and Airflow. By the end of this book, you'll have learned how to effectively build, train, and deploy a machine learning model using the machine learning platform you built. What you will learn Understand the different stages of a machine learning project Use open source software to build a machine learning platform on Kubernetes Implement a complete ML project using the machine learning platform presented in this book Improve on your organization's collaborative journey toward machine learning Discover how to use the platform as a data engineer, ML engineer, or data scientist Find out how to apply machine learning to solve real business problems Who this book is for This book is for data scientists, data engineers, IT platform owners, AI product owners, and data architects who want to build their own platform for ML development. Although this book starts with the basics, a solid understanding of Python and Kubernetes, along with knowledge of the basic concepts of data science and data engineering will help you grasp the topics covered in this book in a better way. 
505 0 |a Table of Contents Challenges in Machine Learning Understanding MLOps Exploring Kubernetes The Anatomy of a Machine Learning Platform Data Engineering Machine Learning Engineering Model Deployment and Automation Building a Complete ML Project Using the Platform Building Your Data Pipeline Building, Deploying and Monitoring Your Model Machine Learning on Kubernetes. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Open source software. 
650 6 |a Apprentissage automatique. 
650 6 |a Logiciels libres. 
650 7 |a Machine learning  |2 fast 
650 7 |a Open source software  |2 fast 
700 1 |a Brigoli, Ross,  |e author. 
776 0 8 |i Print version:  |z 9781803241807 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781803241807/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6996269 
938 |a EBSCOhost  |b EBSC  |n 3291290 
994 |a 92  |b IZTAP