Cargando…

The R book /

"The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and c...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Jones, Elinor (Associate Professor) (Autor), Harden, Simon (Autor), Crawley, Michael J. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ : John Wiley & Sons Ltd, 2023.
Edición:Third edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1323328970
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 220222t20232023njua ob 001 0 eng
010 |a  2022008353 
040 |a DLC  |b eng  |e rda  |c DLC  |d OCLCF  |d YDX  |d DG1  |d UBY  |d ORMDA  |d OCLCO 
020 |a 9781119634430  |q electronic publication 
020 |a 1119634431  |q electronic publication 
020 |a 9781119634409  |q adobe  |q electronic book 
020 |a 1119634407  |q adobe  |q electronic book 
020 |a 9781119634461  |q electronic book 
020 |a 1119634466  |q electronic book 
020 |z 9781119634324  |q hardcover 
029 1 |a AU@  |b 000072898614 
029 1 |a AU@  |b 000072047501 
035 |a (OCoLC)1323328970 
037 |a 9781119634324  |b O'Reilly Media 
042 |a pcc 
050 0 4 |a QA276.45.R3  |b J66 2023 
082 0 0 |a 005.5/5  |2 23/eng20220528 
049 |a UAMI 
100 1 |a Jones, Elinor  |c (Associate Professor),  |e author. 
245 1 4 |a The R book /  |c Elinor Jones, Simon Harden, Michael J Crawley. 
250 |a Third edition. 
264 1 |a Hoboken, NJ :  |b John Wiley & Sons Ltd,  |c 2023. 
264 4 |c ©2023 
300 |a 1 online resource :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
504 |a Includes bibliographical references and index. 
520 |a "The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition introduces the advantages of the R environment, in a user-friendly format, to beginners and intermediate users in a range of disciplines, from science and engineering to medicine and economics. The format enables it to be either read as a text, or dipped-into as a reference manual. This third edition: Uses RStudio, instead of native R, which provides a far more user-friendly environment for those new to R Revised to account for the evolution of R over the past seven years including new developments and modern teaching methods Takes readers from a starting point of no knowledge of R or programming in general, and very little knowledge of statistics, through to advanced techniques Provides a comprehensive introduction to most areas of statistics used by non-statisticians, with minimal mathematics Explains concepts and how to implement them in R with in-depth discussion on how to interpret the resulting output Contains a large number of worked examples in R Companion website available with downloadable datasets, slides and other teaching materials Introduces modern ideas in handling data in R, e.g. the tidyverse. Features full colour text and extensive graphics throughout Features a fully revised and updated bibliography and reference section."--  |c Provided by publisher. 
588 |a Description based on online resource; title from digital title page (viewed on September 15, 2022). 
505 0 |a Chapter 1 Getting Started -- Chapter 2 Technical Background -- Chapter 3 Essentials of the R Language -- Chapter 4 Data Input and Dataframes -- Chapter 5 Graphics -- Chapter 6 Graphics in More Detail -- Chapter 7 Tables -- Chapter 8 Probability Distributions in R -- Chapter 9 Testing -- Chapter 10 Regression -- Chapter 11 Generalised Linear Models -- Chapter 12 Generalised Additive Models -- Chapter 13 Mixed-Effect Models -- Chapter 14 Non-linear Regression -- Chapter 15 Survival Analysis -- Chapter 16 Designed Experiments -- Chapter 17 Meta-Analysis -- Chapter 18 Time Series -- Chapter 19 Multivariate Statistics -- Chapter 20 Classification and Regression Trees -- Chapter 21 Spatial Statistics -- Chapter 22 Bayesian Statistics -- Chapter 23 Simulation Models 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a R (Computer program language) 
650 0 |a Mathematical statistics  |x Data processing. 
650 6 |a R (Langage de programmation) 
650 6 |a Statistique mathématique  |x Informatique. 
650 7 |a Mathematical statistics  |x Data processing  |2 fast 
650 7 |a R (Computer program language)  |2 fast 
700 1 |a Harden, Simon,  |e author. 
700 1 |a Crawley, Michael J.,  |e author. 
776 0 8 |i Print version:  |a Jones, Elinor  |t R book  |b Third edition.  |d Hoboken, NJ : Wiley, 2022  |z 9781119634324  |w (DLC) 2022008352 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781119634324/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP