Cargando…

Essential math for data science : take control of your data with fundamental linear algebra, probability, and statistics /

Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. A...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Nield, Thomas (Computer programmer) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, Inc., 2022.
Edición:First edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_on1321899316
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 220529t20222022caua o 001 0 eng d
040 |a YDX  |b eng  |e rda  |c YDX  |d N$T  |d OCLCF  |d TEFOD  |d UKAHL  |d OCLCQ  |d YDX  |d FTB  |d OCLCQ  |d OCLCO 
020 |a 9781098102906  |q electronic book 
020 |a 1098102908  |q electronic book 
020 |a 9781098102883  |q electronic book 
020 |a 1098102886  |q electronic book 
020 |z 9781098102937 
020 |z 1098102932 
029 1 |a AU@  |b 000072056157 
035 |a (OCoLC)1321899316 
037 |a 9781098102920  |b O'Reilly Media 
037 |a 964660D6-F937-44A1-A467-7280B643FA10  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.9.D343  |b N54 2022 
082 0 4 |a 510.24006312  |2 23/eng/20220602 
049 |a UAMI 
100 1 |a Nield, Thomas  |c (Computer programmer),  |e author. 
245 1 0 |a Essential math for data science :  |b take control of your data with fundamental linear algebra, probability, and statistics /  |c Thomas Nield. 
250 |a First edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media, Inc.,  |c 2022. 
264 4 |c ©2022 
300 |a 1 online resource (xiv, 332 pages) :  |b color illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
520 |a Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. Along the way you'll also gain practical insights into the state of data science and how to use those insights to maximize your career. Learn how to: Use Python code and libraries like SymPy, NumPy, and scikit-learn to explore essential mathematical concepts like calculus, linear algebra, statistics, and machine learning Understand techniques like linear regression, logistic regression, and neural networks in plain English, with minimal mathematical notation and jargon Perform descriptive statistics and hypothesis testing on a dataset to interpret p-values and statistical significance Manipulate vectors and matrices and perform matrix decomposition Integrate and build upon incremental knowledge of calculus, probability, statistics, and linear algebra, and apply it to regression models including neural networks Navigate practically through a data science career and avoid common pitfalls, assumptions, and biases while tuning your skill set to stand out in the job market. 
588 |a Description based on online resource; title from digital title page (viewed on April 14, 2023). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Data mining  |x Mathematics. 
650 0 |a Mathematics. 
650 0 |a Machine learning  |x Mathematics. 
650 6 |a Exploration de données (Informatique)  |x Mathématiques. 
650 6 |a Mathématiques. 
650 6 |a Apprentissage automatique  |x Mathématiques. 
650 7 |a Data mining  |x Mathematics  |2 fast 
650 7 |a Mathematics  |2 fast 
776 0 8 |i Print version:  |z 1098102932  |z 9781098102937  |w (OCoLC)1308799337 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781098102920/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH40273599 
938 |a YBP Library Services  |b YANK  |n 302902411 
938 |a EBSCOhost  |b EBSC  |n 3293931 
994 |a 92  |b IZTAP