Cargando…

Prediction revisited : the importance of observation /

"Prediction Revisited is a ground-breaking book for financial analysts and researchers--as well as data scientists in other disciplines--to reconsider classical statistics and approaches to forming predictions. Czasonis, Kritzman, and Turkington lay out the foundations of their cutting-edge app...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Czasonis, Megan (Autor), Kritzman, Mark P. (Autor), Turkington, David, 1983- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, New Jersey : John Wiley & Sons, Inc., [2022]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Timeline of Innovations
  • Essential Concepts
  • Preface
  • 1 Introduction
  • Relevance
  • Informativeness
  • Similarity
  • Roadmap
  • 2 Observing Information
  • Observing Information Conceptually
  • Central Tendency
  • Spread
  • Information Theory
  • The Strong Pull of Normality
  • A Constant of Convenience
  • Key Takeaways
  • Observing Information Mathematically
  • Average
  • Spread
  • Information Distance
  • Observing Information Applied
  • Appendix 2.1: On the Inflection Point of the Normal Distribution
  • References
  • 3 Co-occurrence
  • Co-occurrence Conceptually
  • Correlation as an Information-Weighted Average of Co-occurrence
  • Pairs of Pairs
  • Across Many Attributes
  • Key Takeaways
  • Co-occurrence Mathematically
  • The Covariance Matrix
  • Co-occurrence Applied
  • References
  • 4 Relevance
  • Relevance Conceptually
  • Informativeness
  • Similarity
  • Relevance and Prediction
  • How Much Have You Regressed?
  • Partial Sample Regression
  • Asymmetry
  • Sensitivity
  • Memory and Bias
  • Key Takeaways
  • Relevance Mathematically
  • Prediction
  • Equivalence to Linear Regression
  • Partial Sample Regression
  • Asymmetry
  • Relevance Applied
  • Appendix 4.1: Predicting Binary Outcomes
  • Predicting Binary Outcomes Conceptually
  • Predicting Binary Outcomes Mathematically
  • References
  • 5 Fit
  • Fit Conceptually
  • Failing Gracefully
  • Why Fit Varies
  • Avoiding Bias
  • Precision
  • Focus
  • Key Takeaways
  • Fit Mathematically
  • Components of Fit
  • Precision
  • Fit Applied
  • 6 Reliability
  • Reliability Conceptually
  • Key Takeaways
  • Reliability Mathematically
  • Reliability Applied
  • References
  • 7 Toward Complexity
  • Toward Complexity Conceptually
  • Learning by Example
  • Expanding on Relevance
  • Key Takeaways
  • Toward Complexity Mathematically
  • Complexity Applied
  • References
  • 8 Foundations of Relevance
  • Observations and Relevance: A Brief Review of the Main Insights
  • Spread
  • Co-occurrence
  • Relevance
  • Asymmetry
  • Fit and Reliability
  • Partial Sample Regression and Machine Learning Algorithms
  • Abraham de Moivre (1667-1754)
  • Pierre-Simon Laplace (1749-1827)
  • Carl Friedrich Gauss (1777-1853)
  • Francis Galton (1822-1911)
  • Karl Pearson (1857-1936)
  • Ronald Fisher (1890-1962)
  • Prasanta Chandra Mahalanobis (1893-1972)
  • Claude Shannon (1916-2001)
  • References
  • Concluding Thoughts
  • Perspective
  • Insights
  • Prescriptions
  • Index
  • EULA