Cargando…

Building Data Science Solutions with Anaconda : a Comprehensive Starter Guide to Building Robust and Complete Models /

The missing manual to becoming a successful data scientist--develop the skills to use key tools and the knowledge to thrive in the AI/ML landscape Key Features Learn from an AI patent-holding engineering manager with deep experience in Anaconda tools and OSS Get to grips with critical aspects of dat...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Meador, Dan
Otros Autores: Goldsmith, Kevin
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited, 2022.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1319219487
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 220521s2022 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d ORMDA  |d TEFOD  |d OCLCF  |d OCLCQ  |d N$T  |d OCLCQ  |d IEEEE  |d OCLCO 
020 |a 1800561563 
020 |a 9781800561564  |q (electronic bk.) 
029 1 |a AU@  |b 000072995844 
035 |a (OCoLC)1319219487 
037 |a 9781800568785  |b O'Reilly Media 
037 |a 4D01605C-F220-4828-8426-903307125499  |b OverDrive, Inc.  |n http://www.overdrive.com 
037 |a 10163544  |b IEEE 
050 4 |a QA76.9.D343 
082 0 4 |a 006.312  |2 23/eng/20220602 
049 |a UAMI 
100 1 |a Meador, Dan. 
245 1 0 |a Building Data Science Solutions with Anaconda :  |b a Comprehensive Starter Guide to Building Robust and Complete Models /  |c Dan Meador ; foreword by Kevin Goldsmith. 
260 |a Birmingham :  |b Packt Publishing, Limited,  |c 2022. 
300 |a 1 online resource (330 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
520 |a The missing manual to becoming a successful data scientist--develop the skills to use key tools and the knowledge to thrive in the AI/ML landscape Key Features Learn from an AI patent-holding engineering manager with deep experience in Anaconda tools and OSS Get to grips with critical aspects of data science such as bias in datasets and interpretability of models Gain a deeper understanding of the AI/ML landscape through real-world examples and practical analogies Book Description You might already know that there's a wealth of data science and machine learning resources available on the market, but what you might not know is how much is left out by most of these AI resources. This book not only covers everything you need to know about algorithm families but also ensures that you become an expert in everything, from the critical aspects of avoiding bias in data to model interpretability, which have now become must-have skills. In this book, you'll learn how using Anaconda as the easy button, can give you a complete view of the capabilities of tools such as conda, which includes how to specify new channels to pull in any package you want as well as discovering new open source tools at your disposal. You'll also get a clear picture of how to evaluate which model to train and identify when they have become unusable due to drift. Finally, you'll learn about the powerful yet simple techniques that you can use to explain how your model works. By the end of this book, you'll feel confident using conda and Anaconda Navigator to manage dependencies and gain a thorough understanding of the end-to-end data science workflow. What you will learn Install packages and create virtual environments using conda Understand the landscape of open source software and assess new tools Use scikit-learn to train and evaluate model approaches Detect bias types in your data and what you can do to prevent it Grow your skillset with tools such as NumPy, pandas, and Jupyter Notebooks Solve common dataset issues, such as imbalanced and missing data Use LIME and SHAP to interpret and explain black-box models Who this book is for If you're a data analyst or data science professional looking to make the most of Anaconda's capabilities and deepen your understanding of data science workflows, then this book is for you. You don't need any prior experience with Anaconda, but a working knowledge of Python and data science basics is a must. 
505 0 |a Table of Contents Understanding the AI/ML Landscape Analyzing Open Source Software Using Anaconda Distribution to Manage Packages Working with Jupyter Notebooks and NumPy Cleaning and Visualizing Data Overcoming Bias in AI/ML Choosing the Best AI Algorithm Dealing with Common Data Problems Building a Regression Model with scikit-learn Explainable AI - Using LIME and SHAP Tuning Hyperparameters and Versioning Your Model. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Data mining. 
650 0 |a Machine learning. 
650 0 |a Computing platforms. 
650 6 |a Exploration de données (Informatique) 
650 6 |a Apprentissage automatique. 
650 6 |a Plateformes (Informatique) 
650 7 |a Computing platforms  |2 fast 
650 7 |a Data mining  |2 fast 
650 7 |a Machine learning  |2 fast 
700 1 |a Goldsmith, Kevin. 
776 0 8 |i Print version:  |a Meador, Dan.  |t Building Data Science Solutions with Anaconda.  |d Birmingham : Packt Publishing, Limited, ©2022 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781800568785/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6985028 
938 |a EBSCOhost  |b EBSC  |n 3279283 
994 |a 92  |b IZTAP