Use PyNNDescent and `nessvec` to index high dimensional vectors (word embeddings).
In this video, Hobson shows how to index high dimensional vectors like word embeddings using a new approximate nearest neighbor algorithm by Leland McInnes. Along the way you can see how to explore an unfamiliar Python package like PyNNDescent without ever having to leave the keyboard (tab-completio...
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | Manning (Firm) (pubisher.) |
Formato: | Electrónico Video |
Idioma: | Inglés |
Publicado: |
[Place of publication not identified] :
Manning Publications,
2022.
|
Edición: | [First edition]. |
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Ejemplares similares
-
Train Word embeddings from scratch with Nessvec and PyTorch.
Publicado: (2022) -
Deep learning for natural language processing : applications of deep neural networks to machine learning tasks /
Publicado: (2017) -
The complete PyTorch course : deep learning & computer vision.
Publicado: (2019) -
Natural language annotation for machine learning /
por: Pustejovsky, J. (James), et al.
Publicado: (2013) -
Hands-on natural language processing with PyTorch /
Publicado: (2019)