|
|
|
|
LEADER |
00000cgm a22000007i 4500 |
001 |
OR_on1312647224 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o c |
007 |
vz czazuu |
007 |
cr cnannnuuuuu |
008 |
220426s2022 xx 049 o vleng d |
040 |
|
|
|a ORMDA
|b eng
|e rda
|e pn
|c ORMDA
|d OCLCO
|d OCLCF
|
024 |
8 |
|
|a 10000MNHV202261
|
029 |
1 |
|
|a AU@
|b 000071968706
|
035 |
|
|
|a (OCoLC)1312647224
|
037 |
|
|
|a 10000MNHV202261
|b O'Reilly Media
|
050 |
|
4 |
|a QA76.9.N38
|
082 |
0 |
4 |
|a 006.3/5
|2 23/eng/20220426
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Use PyNNDescent and `nessvec` to index high dimensional vectors (word embeddings).
|
250 |
|
|
|a [First edition].
|
264 |
|
1 |
|a [Place of publication not identified] :
|b Manning Publications,
|c 2022.
|
300 |
|
|
|a 1 online resource (1 video file (49 min.)) :
|b sound, color.
|
306 |
|
|
|a 004900
|
336 |
|
|
|a two-dimensional moving image
|b tdi
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
344 |
|
|
|a digital
|2 rdatr
|
347 |
|
|
|a video file
|2 rdaft
|
380 |
|
|
|a Instructional films
|2 lcgft
|
511 |
0 |
|
|a Hobson Lane, presenter.
|
520 |
|
|
|a In this video, Hobson shows how to index high dimensional vectors like word embeddings using a new approximate nearest neighbor algorithm by Leland McInnes. Along the way you can see how to explore an unfamiliar Python package like PyNNDescent without ever having to leave the keyboard (tab-completion, `help()`, `?` operator) And you will see how to use `SpaCy` language models to retrieve all sorts of NLU tags for words, including word vectors.
|
588 |
0 |
|
|a Online resource; title from title details screen (O'Reilly, viewed April 26, 2022).
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Natural language processing (Computer science)
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
2 |
|a Natural Language Processing
|
650 |
|
6 |
|a Traitement automatique des langues naturelles.
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
7 |
|a Machine learning.
|2 fast
|0 (OCoLC)fst01004795
|
650 |
|
7 |
|a Natural language processing (Computer science)
|2 fast
|0 (OCoLC)fst01034365
|
655 |
|
2 |
|a Webcast
|
655 |
|
7 |
|a Instructional films.
|2 fast
|0 (OCoLC)fst01726236
|
655 |
|
7 |
|a Internet videos.
|2 fast
|0 (OCoLC)fst01750214
|
655 |
|
7 |
|a Nonfiction films.
|2 fast
|0 (OCoLC)fst01710269
|
655 |
|
7 |
|a Instructional films.
|2 lcgft
|
655 |
|
7 |
|a Nonfiction films.
|2 lcgft
|
655 |
|
7 |
|a Internet videos.
|2 lcgft
|
655 |
|
7 |
|a Films de formation.
|2 rvmgf
|
655 |
|
7 |
|a Films autres que de fiction.
|2 rvmgf
|
655 |
|
7 |
|a Vidéos sur Internet.
|2 rvmgf
|
700 |
1 |
|
|a Lane, Hobson,
|e presenter.
|
710 |
2 |
|
|a Manning (Firm),
|e pubisher.
|
856 |
4 |
0 |
|u https://learning.oreilly.com/videos/~/10000MNHV202261/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
994 |
|
|
|a 92
|b IZTAP
|