Cargando…

Distributed machine learning with Python : accelerating model training and serving with distributed systems /

Chapter 2: Parameter Server and All-Reduce -- Technical requirements -- Parameter server architecture -- Communication bottleneck in the parameter server architecture -- Sharding the model among parameter servers -- Implementing the parameter server -- Defining model layers -- Defining the parameter...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Wang, Guanhua
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited, 2022.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Descripción
Sumario:Chapter 2: Parameter Server and All-Reduce -- Technical requirements -- Parameter server architecture -- Communication bottleneck in the parameter server architecture -- Sharding the model among parameter servers -- Implementing the parameter server -- Defining model layers -- Defining the parameter server -- Defining the worker -- Passing data between the parameter server and worker -- Issues with the parameter server -- The parameter server architecture introduces a high coding complexity for practitioners -- All-Reduce architecture -- Reduce -- All-Reduce -- Ring All-Reduce.
Notas:Pros and cons of pipeline parallelism.
Descripción Física:1 online resource (284 pages) : color illustrations
ISBN:1801817219
9781801817219