Cargando…

Simplify Big Data Analytics with Amazon EMR : a Beginner's Guide to Learning and Implementing Amazon EMR for Building Data Analytics Solutions.

Design scalable big data solutions using Hadoop, Spark, and AWS cloud native services Key Features Build data pipelines that require distributed processing capabilities on a large volume of data Discover the security features of EMR such as data protection and granular permission management Explore...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mishra, Sakti (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited, 2022.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1305839532
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 220319s2022 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d ORMDA  |d OCLCO  |d UKAHL  |d OCLCF  |d NLW  |d N$T  |d OCLCQ  |d IEEEE 
020 |a 180107772X 
020 |a 9781801077729  |q (electronic bk.) 
029 1 |a AU@  |b 000071547160 
035 |a (OCoLC)1305839532 
037 |a 9781801071079  |b O'Reilly Media 
037 |a 10163079  |b IEEE 
050 4 |a QA76.9.D32 
082 0 4 |a 005.7  |2 23 
049 |a UAMI 
100 1 |a Mishra, Sakti,  |e author. 
245 1 0 |a Simplify Big Data Analytics with Amazon EMR :  |b a Beginner's Guide to Learning and Implementing Amazon EMR for Building Data Analytics Solutions. 
260 |a Birmingham :  |b Packt Publishing, Limited,  |c 2022. 
300 |a 1 online resource (430 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
520 |a Design scalable big data solutions using Hadoop, Spark, and AWS cloud native services Key Features Build data pipelines that require distributed processing capabilities on a large volume of data Discover the security features of EMR such as data protection and granular permission management Explore best practices and optimization techniques for building data analytics solutions in Amazon EMR Book Description Amazon EMR, formerly Amazon Elastic MapReduce, provides a managed Hadoop cluster in Amazon Web Services (AWS) that you can use to implement batch or streaming data pipelines. By gaining expertise in Amazon EMR, you can design and implement data analytics pipelines with persistent or transient EMR clusters in AWS. This book is a practical guide to Amazon EMR for building data pipelines. You'll start by understanding the Amazon EMR architecture, cluster nodes, features, and deployment options, along with their pricing. Next, the book covers the various big data applications that EMR supports. You'll then focus on the advanced configuration of EMR applications, hardware, networking, security, troubleshooting, logging, and the different SDKs and APIs it provides. Later chapters will show you how to implement common Amazon EMR use cases, including batch ETL with Spark, real-time streaming with Spark Streaming, and handling UPSERT in S3 Data Lake with Apache Hudi. Finally, you'll orchestrate your EMR jobs and strategize on-premises Hadoop cluster migration to EMR. In addition to this, you'll explore best practices and cost optimization techniques while implementing your data analytics pipeline in EMR. By the end of this book, you'll be able to build and deploy Hadoop- or Spark-based apps on Amazon EMR and also migrate your existing on-premises Hadoop workloads to AWS. What you will learn Explore Amazon EMR features, architecture, Hadoop interfaces, and EMR Studio Configure, deploy, and orchestrate Hadoop or Spark jobs in production Implement the security, data governance, and monitoring capabilities of EMR Build applications for batch and real-time streaming data analytics solutions Perform interactive development with a persistent EMR cluster and Notebook Orchestrate an EMR Spark job using AWS Step Functions and Apache Airflow Who this book is for This book is for data engineers, data analysts, data scientists, and solution architects who are interested in building data analytics solutions with the Hadoop ecosystem services and Amazon EMR. Prior experience in either Python programming, Scala, or the Java programming language and a basic understanding of Hadoop and AWS will help you make the most out of this book. 
505 0 |a Table of Contents An Overview of Amazon EMR Exploring the Architecture and Deployment Options Common Use Cases and Architecture Patterns Big Data Applications and Notebooks Available in Amazon EMR Setting Up and Configuring EMR Clusters Monitoring, Scaling, and High Availability Understanding Security in Amazon EMR Understanding Data Governance in Amazon EMR Implementing Batch ETL Pipeline with Amazon EMR and Apache Spark Implementing Real-Time Streaming with Amazon EMR and Spark Streaming Implementing UPSERT on S3 Data Lake with Apache Spark and Apache Hudi Orchestrating Amazon EMR Jobs with AWS Step Functions and Apache Airflow/MWAA Migrating On-Premises Hadoop Workloads to Amazon EMR Best Practices and Cost Optimization Techniques. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a MapReduce (Computer file) 
630 0 7 |a MapReduce (Computer file)  |2 fast  |0 (OCoLC)fst01915150 
650 0 |a Big data. 
650 6 |a Données volumineuses. 
650 7 |a COMPUTERS  |x Data Processing.  |2 bisacsh 
650 7 |a COMPUTERS  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a COMPUTERS  |x Data Visualization.  |2 bisacsh 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
776 0 8 |i Print version:  |a Mishra, Sakti.  |t Simplify Big Data Analytics with Amazon EMR.  |d Birmingham : Packt Publishing, Limited, ©2022 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781801071079/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH39690876 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6921551 
938 |a EBSCOhost  |b EBSC  |n 3181195 
994 |a 92  |b IZTAP