|
|
|
|
LEADER |
00000cam a2200000Ii 4500 |
001 |
OR_on1303571868 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
220315s2022 nyu ob 001 0 eng d |
040 |
|
|
|a ORMDA
|b eng
|e rda
|e pn
|c ORMDA
|d ORMDA
|d GW5XE
|d YDX
|d EBLCP
|d OCLCO
|d YDX
|d OCLCF
|d N$T
|d UKAHL
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1303667318
|a 1303890756
|a 1304248432
|a 1304361076
|a 1304399984
|
020 |
|
|
|a 9781484280171
|q (electronic bk.)
|
020 |
|
|
|a 1484280172
|q (electronic bk.)
|
020 |
|
|
|z 9781484280164
|
020 |
|
|
|z 1484280164
|
024 |
7 |
|
|a 10.1007/978-1-4842-8017-1
|2 doi
|
029 |
1 |
|
|a AU@
|b 000071498688
|
029 |
1 |
|
|a AU@
|b 000071983049
|
035 |
|
|
|a (OCoLC)1303571868
|z (OCoLC)1303667318
|z (OCoLC)1303890756
|z (OCoLC)1304248432
|z (OCoLC)1304361076
|z (OCoLC)1304399984
|
037 |
|
|
|a 9781484280171
|b O'Reilly Media
|
050 |
|
4 |
|a QA76.73.P98
|
072 |
|
7 |
|a UYQM
|2 bicssc
|
072 |
|
7 |
|a COM004000
|2 bisacsh
|
072 |
|
7 |
|a UYQM
|2 thema
|
082 |
0 |
4 |
|a 005.13/3
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Chatterjee, Chanchal,
|e author.
|
245 |
1 |
0 |
|a Adaptive machine learning algorithms with Python :
|b solve data analytics and machine learning problems on edge devices /
|c Chanchal Chatterjee.
|
250 |
|
|
|a [First edition].
|
264 |
|
1 |
|a New York, NY :
|b Apress,
|c [2022]
|
300 |
|
|
|a 1 online resource (290 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a Learn to use adaptive algorithms to solve real-world streaming data problems. This book covers a multitude of data processing challenges, ranging from the simple to the complex. At each step, you will gain insight into real-world use cases, find solutions, explore code used to solve these problems, and create new algorithms for your own use. Authors Chanchal Chatterjee and Vwani P. Roychowdhury begin by introducing a common framework for creating adaptive algorithms, and demonstrating how to use it to address various streaming data issues. Examples range from using matrix functions to solve machine learning and data analysis problems to more critical edge computation problems. They handle time-varying, non-stationary data with minimal compute, memory, latency, and bandwidth. Upon finishing this book, you will have a solid understanding of how to solve adaptive machine learning and data analytics problems and be able to derive new algorithms for your own use cases. You will also come away with solutions to high volume time-varying data with high dimensionality in a low compute, low latency environment.
|
505 |
0 |
|
|a Chapter 1. Introducing Data Representation Features -- Chapter 2. General Theories and Notations -- Chapter 3. Square Root and Inverse Square Root -- Chapter 4. First Principal Eigenvector -- Chapter 5. Principal and Minor Eigenvectors -- Chapter 6. Accelerated Computation eigenvectors -- Chapter 7. Generalized Eigenvectors -- Chapter 8. Real-World Applications Linear Algorithms.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Python (Computer program language)
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
6 |
|a Python (Langage de programmation)
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
7 |
|a Machine learning
|2 fast
|
650 |
|
7 |
|a Python (Computer program language)
|2 fast
|
776 |
0 |
8 |
|i Print version:
|z 1484280164
|z 9781484280164
|w (OCoLC)1288662953
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781484280171/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH39957014
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6921844
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 302791091
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 3198071
|
994 |
|
|
|a 92
|b IZTAP
|