Exploring the nuances of energy data in Python.
Energy companies forecast energy demand for their customers using time series and forecasting models to drive business decisions and insights. One of the keys to forecasting well is exploring your data. Here, Aric LaBarr explores some energy data to discover all the nuances we need for forecasting!.
Clasificación: | Libro Electrónico |
---|---|
Formato: | Electrónico Video |
Idioma: | Inglés |
Publicado: |
[Place of publication not identified] :
Manning Publications,
[2021]
|
Edición: | [First edition]. |
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Ejemplares similares
-
Thoughtful machine learning with Python : a test-driven approach /
por: Kirk, Matthew (Data scientist)
Publicado: (2017) -
Distributed machine learning with Python : accelerating model training and serving with distributed systems /
por: Wang, Guanhua
Publicado: (2022) -
Hands-on machine learning with scikit-learn and scientific Python toolkits : a practical guide to implementing supervised and unsupervised machine learning algorithms in Python /
por: Amr, Tarek
Publicado: (2020) -
Python machine learning blueprints : intuitive data projects you can relate to : an approachable guide to applying advanced machine learning methods to everyday problems /
por: Combs, Alexander T.
Publicado: (2016) -
Advanced machine learning with scikit-learn : tools and techniques for predictive analytics in Python /
Publicado: (2015)