Using AWS Sagemaker.
Learn to use AWS Sagemaker Studio to build ML solutions. Example covered include Autopilot, Platform Overview, Architecture and features. Finally a Sagemaker Jumpstart example is walked through.
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | Deza, Alfredo |
Formato: | Electrónico Video |
Idioma: | Inglés |
Publicado: |
[Place of publication not identified] :
Pragmatic AI Solutions,
2021.
|
Edición: | [First edition]. |
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Ejemplares similares
-
Machine learning fundamentals with Amazon SageMaker on AWS : LiveLessons /
Publicado: (2020) -
Amazon SageMaker Best Practices Proven Tips and Tricks to Build Successful Machine Learning Solutions on Amazon SageMaker.
por: Muppala, Sireesha
Publicado: (2021) -
Machine Learning in the AWS Cloud Add Intelligence to Applications with AWS SageMaker and AWS Rekognition.
por: Mishra, Abhishek
Publicado: (2019) -
Learn how to build intelligent data applications with Amazon Web Services (AWS) : understanding and using AWS products and services, AWS Data Pipeline, Kinesis Analytics, RDS and Redshift databases, and Amazon Machine Learning /
Publicado: (2017) -
SageMaker Studio Lab first thoughts : Amazon SageMaker Studio Lab /
Publicado: (2021)