Cargando…

Artificial intelligence for renewable energy systems /

ARTIFICIAL INTELLIGENCE FOR RENEWABLE ENERGY SYSTEMS Renewable energy systems, including solar, wind, biodiesel, hybrid energy, and other relevant types, have numerous advantages compared to their conventional counterparts. This book presents the application of machine learning and deep learning tec...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Vyas, Ajay Kumar (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ : Beverly, MA : Wiley ; Scrivener Publishing, 2022.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_on1301543087
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 220303s2022 nju ob 001 0 eng d
040 |a DG1  |b eng  |e rda  |e pn  |c DG1  |d OCLCO  |d ORMDA  |d OCLCF  |d UKAHL  |d N$T  |d OCLCQ 
020 |a 9781119761686  |q (electronic bk. : oBook) 
020 |a 1119761689  |q (electronic bk. : oBook) 
020 |a 9781119761723  |q (electronic bk.) 
020 |a 1119761727  |q (electronic bk.) 
020 |z 9781119761693  |q (print) 
024 7 |a 10.1002/9781119761686  |2 doi 
029 1 |a AU@  |b 000071250414 
035 |a (OCoLC)1301543087 
037 |a 9781119761693  |b O'Reilly Media 
050 4 |a TJ808 
082 0 4 |a 621.042  |2 23 
049 |a UAMI 
245 0 0 |a Artificial intelligence for renewable energy systems /  |c edited by Ajay Kumar Vyas [and more]. 
264 1 |a Hoboken, NJ :  |b Wiley ;  |a Beverly, MA :  |b Scrivener Publishing,  |c 2022. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Front Matter -- Analysis of Six-Phase Grid Connected Synchronous Generator in Wind Power Generation / Arif Iqbal, Girish Kumar Singh -- Artificial Intelligence as a Tool for Conservation and Efficient Utilization of Renewable Resource / N Vinay, Ajay Sudhir Bale, Subhashish Tiwari, Chithra R Baby -- Artificial Intelligence-Based Energy-Efficient Clustering and Routing in IoT-Assisted Wireless Sensor Network / Nitesh Chouhan -- Artificial Intelligence for Modeling and Optimization of the Biogas Production / Narendra Khatri, Kamal Kishore Khatri -- Battery State-of-Charge Modeling for Solar PV Array Using Polynomial Regression / Siddhi Vinayak Pandey, Jeet Patel, Harsh S Dhiman -- Deep Learning Algorithms for Wind Forecasting: An Overview / M Lydia, G Edwin Prem Kumar -- Deep Feature Selection for Wind Forecasting-I / C Ramakrishnan, S Sridhar, Kusumika Krori Dutta, R Karthick, C Janamejaya -- Deep Feature Selection for Wind Forecasting-II / S Oswalt Manoj, JP Ananth, Balan Dhanka, Maharaja Kamatchi -- Data Falsification Detection in AMI: A Secure Perspective Analysis / VV Vineeth, S Sophia -- Forecasting of Electricity Consumption for G20 Members Using Various Machine Learning Techniques / Jaymin Suhagiya, Deep Raval, Siddhi Vinayak Pandey, Jeet Patel, Ayushi Gupta, Akshay Srivastava -- Use of Artificial Intelligence (AI) in the Optimization of Production of Biodiesel Energy / Manvinder Singh Pahwa, Manish Dadhich, Jaskaran Singh Saini, Dinesh Kumar Saini -- Index -- Also of Interest 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (John Wiley, viewed March 3, 2022). 
520 |a ARTIFICIAL INTELLIGENCE FOR RENEWABLE ENERGY SYSTEMS Renewable energy systems, including solar, wind, biodiesel, hybrid energy, and other relevant types, have numerous advantages compared to their conventional counterparts. This book presents the application of machine learning and deep learning techniques for renewable energy system modeling, forecasting, and optimization for efficient system design. Due to the importance of renewable energy in today's world, this book was designed to enhance the reader's knowledge based on current developments in the field. For instance, the extraction and selection of machine learning algorithms for renewable energy systems, forecasting of wind and solar radiation are featured in the book. Also highlighted are intelligent data, renewable energy informatics systems based on supervisory control and data acquisition (SCADA); and intelligent condition monitoring of solar and wind energy systems. Moreover, an AI-based system for real-time decision-making for renewable energy systems is presented; and also demonstrated is the prediction of energy consumption in green buildings using machine learning. The chapter authors also provide both experimental and real datasets with great potential in the renewable energy sector, which apply machine learning (ML) and deep learning (DL) algorithms that will be helpful for economic and environmental forecasting of the renewable energy business. Audience The primary target audience includes research scholars, industry engineers, and graduate students working in renewable energy, electrical engineering, machine learning, information & communication technology. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Renewable energy sources  |x Data processing. 
650 0 |a Artificial intelligence  |x Engineering applications. 
650 6 |a Énergies renouvelables  |x Informatique. 
650 6 |a Intelligence artificielle  |x Applications en ingénierie. 
650 7 |a Artificial intelligence  |x Engineering applications.  |2 fast  |0 (OCoLC)fst01750450 
650 7 |a Renewable energy sources  |x Data processing.  |2 fast  |0 (OCoLC)fst01094575 
700 1 |a Vyas, Ajay Kumar,  |e editor. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781119761693/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH39675783 
938 |a EBSCOhost  |b EBSC  |n 3163884 
994 |a 92  |b IZTAP