Cargando…

Machine learning for auditors : automating fraud investigations through artificial intelligence /

Use artificial intelligence (AI) techniques to build tools for auditing your organization. This is a practical book with implementation recipes that demystify AI, ML, and data science and their roles as applied to auditing. You will learn about data analysis techniques that will help you gain insigh...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sekar, Maris (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Apress, [2022]
Edición:[First edition].
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1301273982
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 220302s2022 nyu o 001 0 eng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d YDX  |d EBLCP  |d GW5XE  |d YDX  |d OCLCO  |d N$T  |d OCLCF  |d K6U  |d IAC  |d OCLCQ  |d UKAHL  |d OCLCO 
019 |a 1301452969  |a 1301487853  |a 1301773245  |a 1301905203  |a 1301944846  |a 1302002946  |a 1302105975  |a 1302119477  |a 1302180778 
020 |a 9781484280515  |q (electronic bk.) 
020 |a 1484280512  |q (electronic bk.) 
020 |z 1484280504 
020 |z 9781484280508 
024 7 |a 10.1007/978-1-4842-8051-5  |2 doi 
024 8 |a 9781484280515 
029 1 |a AU@  |b 000071245427 
035 |a (OCoLC)1301273982  |z (OCoLC)1301452969  |z (OCoLC)1301487853  |z (OCoLC)1301773245  |z (OCoLC)1301905203  |z (OCoLC)1301944846  |z (OCoLC)1302002946  |z (OCoLC)1302105975  |z (OCoLC)1302119477  |z (OCoLC)1302180778 
037 |a 9781484280515  |b O'Reilly Media 
050 4 |a HF5668.25 
072 7 |a UYQM  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQM  |2 thema 
082 0 4 |a 657.0285/631  |2 23 
049 |a UAMI 
100 1 |a Sekar, Maris,  |e author. 
245 1 0 |a Machine learning for auditors :  |b automating fraud investigations through artificial intelligence /  |c Maris Sekar. 
246 3 0 |a Automating fraud investigations through artificial intelligence 
250 |a [First edition]. 
264 1 |a New York, NY :  |b Apress,  |c [2022] 
300 |a 1 online resource (241 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
520 |a Use artificial intelligence (AI) techniques to build tools for auditing your organization. This is a practical book with implementation recipes that demystify AI, ML, and data science and their roles as applied to auditing. You will learn about data analysis techniques that will help you gain insights into your data and become a better data storyteller. The guidance in this book around applying artificial intelligence in support of audit investigations helps you gain credibility and trust with your internal and external clients. A systematic process to verify your findings is also discussed to ensure the accuracy of your findings. Machine Learning for Auditors provides an emphasis on domain knowledge over complex data science know how that enables you to think like a data scientist. The book helps you achieve the objectives of safeguarding the confidentiality, integrity, and availability of your organizational assets. Data science does not need to be an intimidating concept for audit managers and directors. With the knowledge in this book, you can leverage simple concepts that are beyond mere buzz words to practice innovation in your team. You can build your credibility and trust with your internal and external clients by understanding the data that drives your organization. What You Will Learn Understand the role of auditors as trusted advisors Perform exploratory data analysis to gain a deeper understanding of your organization Build machine learning predictive models that detect fraudulent vendor payments and expenses Integrate data analytics with existing and new technologies Leverage storytelling to communicate and validate your findings effectively Apply practical implementation use cases within your organization Who This Book Is For AI Auditing is for internal auditors who are looking to use data analytics and data science to better understand their organizational data. It is for auditors interested in implementing predictive and prescriptive analytics in support of better decision making and risk-based testing of your organizational processes. 
505 0 |a Part I. Trusted Advisors -- 1. Three Lines of Defense -- 2. Common Audit Challenges -- 3. Existing Solutions -- 4. Data Analytics -- 5. Analytics Structure & Environment -- Part II. Understanding Artificial Intelligence -- 6. Introduction to AI, Data Science, and Machine Learning -- 7. Myths and Misconceptions -- 8. Trust, but Verify -- 9. Machine Learning Fundamentals -- 10. Data Lakes -- 11. Leveraging the Cloud -- 12. SCADA and Operational Technology -- Part III. Storytelling -- 13. What is Storytelling? -- 14. Why Storytelling? -- 15. When to Use Storytelling -- 16. Types of Visualizations -- 17. Effective Stories -- 18. Storytelling Tools -- 19. Storytelling in Auditing -- Part IV. Implementation Recipes -- 20. How to Use the Recipes -- 21. Fraud and Anomaly Detection -- 22. Access Management -- 23. Project Management -- 24. Data Exploration -- 25. Vendor Duplicate Payments -- 26. CAATs 2.0 -- 27. Log Analysis -- 28. Concluding Remarks. 
588 0 |a Print version record. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Auditing, Internal  |x Data processing. 
650 0 |a Corporations  |x Accounting  |x Data processing. 
650 0 |a Fraud  |x Prevention. 
650 0 |a Machine learning. 
650 6 |a Vérification interne  |x Informatique. 
650 6 |a Apprentissage automatique. 
650 7 |a Auditing, Internal  |x Data processing  |2 fast 
650 7 |a Corporations  |x Accounting  |x Data processing  |2 fast 
650 7 |a Fraud  |x Prevention  |2 fast 
650 7 |a Machine learning  |2 fast 
776 0 8 |i Print version:  |z 1484280504  |z 9781484280508  |w (OCoLC)1290431072 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484280515/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH39852035 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6896984 
938 |a EBSCOhost  |b EBSC  |n 3187149 
938 |a YBP Library Services  |b YANK  |n 302742906 
994 |a 92  |b IZTAP