Cargando…

Time Series Analysis on AWS Learn How to Build Forecasting Models and Detect Anomalies in Your Time Series Data /

Leverage AWS AI/ML managed services to generate value from your time series data Key Features Solve modern time series analysis problems such as forecasting and anomaly detection Gain a solid understanding of AWS AI/ML managed services and apply them to your business problems Explore different algor...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hoarau, Michaël
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited, 2022.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1299383062
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 220226s2022 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d ORMDA  |d OCLCO  |d OCLCF  |d UKAHL  |d OCLCQ  |d N$T  |d OCLCQ  |d IEEEE  |d OCLCO 
019 |a 1298390985 
020 |a 1801814023 
020 |a 9781801814027  |q (electronic bk.) 
029 1 |a AU@  |b 000070676972 
035 |a (OCoLC)1299383062  |z (OCoLC)1298390985 
037 |a 9781801816847  |b O'Reilly Media 
037 |a 10162659  |b IEEE 
050 4 |a HD30.215 
082 0 4 |a 658.40300285554  |2 23 
049 |a UAMI 
100 1 |a Hoarau, Michaël. 
245 1 0 |a Time Series Analysis on AWS  |h [electronic resource] :  |b Learn How to Build Forecasting Models and Detect Anomalies in Your Time Series Data /  |c Michaël Hoarau. 
260 |a Birmingham :  |b Packt Publishing, Limited,  |c 2022. 
300 |a 1 online resource (459 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
520 |a Leverage AWS AI/ML managed services to generate value from your time series data Key Features Solve modern time series analysis problems such as forecasting and anomaly detection Gain a solid understanding of AWS AI/ML managed services and apply them to your business problems Explore different algorithms to build applications that leverage time series data Book Description Being a business analyst and data scientist, you have to use many algorithms and approaches to prepare, process, and build ML-based applications by leveraging time series data, but you face common problems, such as not knowing which algorithm to choose or how to combine and interpret them. Amazon Web Services (AWS) provides numerous services to help you build applications fueled by artificial intelligence (AI) capabilities. This book helps you get to grips with three AWS AI/ML-managed services to enable you to deliver your desired business outcomes. The book begins with Amazon Forecast, where you'll discover how to use time series forecasting, leveraging sophisticated statistical and machine learning algorithms to deliver business outcomes accurately. You'll then learn to use Amazon Lookout for Equipment to build multivariate time series anomaly detection models geared toward industrial equipment and understand how it provides valuable insights to reinforce teams focused on predictive maintenance and predictive quality use cases. In the last chapters, you'll explore Amazon Lookout for Metrics, and automatically detect and diagnose outliers in your business and operational data. By the end of this AWS book, you'll have understood how to use the three AWS AI services effectively to perform time series analysis. What you will learn Understand how time series data differs from other types of data Explore the key challenges that can be solved using time series data Forecast future values of business metrics using Amazon Forecast Detect anomalies and deliver forewarnings using Lookout for Equipment Detect anomalies in business metrics using Amazon Lookout for Metrics Visualize your predictions to reduce the time to extract insights Who this book is for If you're a data analyst, business analyst, or data scientist looking to analyze time series data effectively for solving business problems, this is the book for you. Basic statistics knowledge is assumed, but no machine learning knowledge is necessary. Prior experience with time series data and how it relates to various business problems will help you get the most out of this book. This guide will also help machine learning practitioners find new ways to leverage their skills to build effective time series-based applications. 
505 0 |a Table of Contents An Overview of Time Series Analysis An Overview of Amazon Forecast Creating a Project and Ingesting Your Data Training a Predictor with AutoML Customizing Your Predictor Training Generating New Forecasts Improving and Scaling Your Forecast Strategy An Overview of Amazon Lookout for Equipment Creating a Dataset and Ingesting Your Data Training and Evaluating a Model Scheduling Regular Inferences Reducing Time to Insights for Anomaly Detections An Overview of Amazon Lookout for Metrics Creating and Activating a Detector Viewing Anomalies and Providing Feedback. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
610 2 0 |a Amazon Web Services (Firm) 
610 2 7 |a Amazon Web Services (Firm)  |2 fast 
650 0 |a Industrial management  |x Statistical methods  |x Computer programs. 
650 0 |a Decision making  |x Computer programs. 
650 6 |a Gestion d'entreprise  |x Méthodes statistiques  |x Logiciels. 
650 6 |a Prise de décision  |x Logiciels. 
650 7 |a Decision making  |x Computer programs  |2 fast 
650 7 |a Industrial management  |x Statistical methods  |x Computer programs  |2 fast 
776 0 8 |i Print version:  |a Hoarau, Michael.  |t Time Series Analysis on AWS.  |d Birmingham : Packt Publishing, Limited, ©2022 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781801816847/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH39569220 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6885988 
938 |a EBSCOhost  |b EBSC  |n 3162330 
994 |a 92  |b IZTAP