Grokking deep Q-networks /
Miguel Morales, the master of RL domain and the author of "Grokking Deep Reinforcement Learning", demonstrates how to make reinforcement learning more like supervised learning with the help of the popular algorithm Deep Q-Network, which is still one of the best performing DRL agents.
Clasificación: | Libro Electrónico |
---|---|
Formato: | Electrónico Video |
Idioma: | Inglés |
Publicado: |
[Place of publication not identified] :
Manning Publications,
2020.
|
Edición: | [First edition]. |
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Ejemplares similares
-
Semi-supervised learning : background, applications and future directions /
Publicado: (2018) -
Hands-on Q-learning with Python : practical Q-learning with OpenAI Gym, Keras, and TensorFlow /
por: Habib, Nazia
Publicado: (2019) -
TensorFlow for deep learning : from linear regression to reinforcement learning /
por: Ramsundar, Bharath, et al.
Publicado: (2018) -
Hands-on intelligent agents with OpenAI Gym : a step-by-step guide to develop AI agents using deep reinforcement learning /
por: Palanisamy, Praveen
Publicado: (2018) -
Hands-on intelligent agents with OpenAI Gym : a step-by-step guide to develop AI agents using deep reinforcement learning /
por: Palanisamy, Praveen
Publicado: (2018)