Building custom transformers and estimators to extend PySpark's ML Pipelines.
ML Pipelines are one of the best way to organize your ML code. In this video, we extend PySpark's ML Pipelines with our own components. Flexible, powerful, fast, pick three!.
Clasificación: | Libro Electrónico |
---|---|
Formato: | Electrónico Video |
Idioma: | Inglés |
Publicado: |
[Place of publication not identified] :
Manning Publications,
2021.
|
Edición: | [First edition]. |
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Ejemplares similares
-
Learning PySpark : build data-intensive applications locally and deploy at scale using the combined powers of Python and Spark 2.0 /
por: Drabas, Tomasz, et al.
Publicado: (2017) -
Learning PySpark : build data-intensive applications locally and deploy at scale using the combined powers of Python and Spark 2.0 /
por: Drabas, Tomasz, et al.
Publicado: (2017) -
Machine learning with Pyspark : with natural language processing and recommender systems /
por: Singh, Pramod
Publicado: (2022) -
Machine learning with Pyspark : with natural language processing and recommender systems /
por: Singh, Pramod
Publicado: (2022) -
Introduction to PySpark : from transformations and actions to performance--using the Spark Python API /
Publicado: (2016)