Cargando…

Accelerate machine learning with a unified analytics architecture : deploy machine learning models in minutes, not months /

Machine learning has accelerated in several industries recently, enabling companies to automate decisions and act based on predicted futures. In time, nearly all major industries will embed ML into the core of their businesses, but right now the gap between companies that successfully adopt ML and t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Epstein, Ben (Autor), Roberts, Paige (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly Media, Inc., [2022]
Edición:[First edition].
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007i 4500
001 OR_on1296685686
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 220215s2022 xx a o 000 0 eng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d OCLCO  |d OCLCF  |d OCLCQ 
020 |z 9781098120306 
035 |a (OCoLC)1296685686 
037 |a 9781098120313  |b O'Reilly Media 
050 4 |a Q325.5 
082 0 4 |a 006.3/1  |2 23 
049 |a UAMI 
100 1 |a Epstein, Ben,  |e author 
245 1 0 |a Accelerate machine learning with a unified analytics architecture :  |b deploy machine learning models in minutes, not months /  |c Ben Epstein & Paige Roberts. 
250 |a [First edition]. 
264 1 |a [Place of publication not identified] :  |b O'Reilly Media, Inc.,  |c [2022] 
300 |a 1 online resource (35 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Machine learning has accelerated in several industries recently, enabling companies to automate decisions and act based on predicted futures. In time, nearly all major industries will embed ML into the core of their businesses, but right now the gap between companies that successfully adopt ML and those that fail continues to grow. This report examines why so many ML initiatives stall, especially at the stage of moving models from proof of concept to production. Authors Ben Epstein and Paige Roberts examine the strengths and weaknesses of data lake and data warehouse analytic architectures, including the ways that companies use them cooperatively in production. You'll learn how to merge these separate technology stacks into a unified architecture that will streamline the daily workflows of data scientists and data engineers, and facilitate the seamless transition of models from development into production. With this report, you'll explore: Why the unique challenges of MLOps have caused so many ML applications to fail The evolution of data warehouse and data lake architectures How a unified analytics architecture enables you to unite the workflows of business analysts and data scientists How this architecture helps you get new ML projects into production as easily as creating new tables on a dashboard The advantages of in-database ML, including enhanced security, speed and scalability, accessibility, governance, and production readiness. 
588 0 |a Online resource; title from title details screen (O’Reilly, viewed February 15, 2022). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
700 1 |a Roberts, Paige,  |e author 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781098120313/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP