|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
OR_on1295608568 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
180611s2013 fluab ob 001 0 eng d |
040 |
|
|
|a CZL
|b eng
|e rda
|c CZL
|d NLE
|d UKMGB
|d OCLCF
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|
015 |
|
|
|a GBB839309
|2 bnb
|
016 |
7 |
|
|a 018373228
|2 Uk
|
019 |
|
|
|a 990194291
|
020 |
|
|
|a 0429099991
|
020 |
|
|
|a 9780429099991
|
020 |
|
|
|a 1466567082
|
020 |
|
|
|a 9781466567085
|
029 |
1 |
|
|a UKMGB
|b 018373228
|
029 |
1 |
|
|a AU@
|b 000067556428
|
035 |
|
|
|a (OCoLC)1295608568
|z (OCoLC)990194291
|
037 |
|
|
|a TANDF_282048
|b Ingram Content Group
|
050 |
|
4 |
|a QA162
|b .H63 2014
|
072 |
|
7 |
|a MAT
|x 002000
|2 bisacsh
|
072 |
|
7 |
|a PBF
|2 bicscc
|
082 |
|
4 |
|a 512/.02
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Hodge, Jonathan K.,
|d 1980-
|e author.
|
245 |
1 |
0 |
|a Abstract algebra :
|b an inquiry based approach /
|c by Jonathan K. Hodge, Steven Schlicker and Ted Sundstrom.
|
250 |
|
|
|a 1st edition.
|
264 |
|
1 |
|a Boca Raton, FL :
|b Chapman and Hall/CRC, an imprint of Taylor and Francis,
|c 2013.
|
300 |
|
|
|a 1 online resource (593 p.).
|
336 |
|
|
|a text
|b txt
|
337 |
|
|
|a computer
|b c
|
338 |
|
|
|a online resource
|b cr
|
347 |
|
|
|a text file
|
490 |
1 |
|
|a Textbooks in Mathematics
|
500 |
|
|
|a Description based upon print version of record.
|
505 |
0 |
|
|a Front Cover; Contents; Note to Students; Preface; I. The Integers; 1. The Integers: An Introduction; 2. Divisibility of Integers; 3. Greatest Common Divisors; 4. Prime Factorization; II. Other Number Systems; 5. Equivalence Relations and Zn; 6. Algebra in Other Number Systems; III. Rings; 7. An Introduction to Rings; 8. IntegerMultiples and Exponents; 9. Subrings, Extensions, and Direct Sums; 10. Isomorphism and Invariants; IV. Polynomial Rings; 11. Polynomial Rings; 12. Divisibility in Polynomial Rings; 13. Roots, Factors, and Irreducible Polynomials; 14. Irreducible Polynomials
|
505 |
8 |
|
|a 15. Quotients of Polynomial RingsV. More Ring Theory; 16. Ideals and Homomorphisms; 17. Divisibility and Factorization in Integral Domains; 18. From Z to C; VI. Groups; 19. Symmetry; 20. An Introduction to Groups; 21. Integer Powers of Elements in a Group; 22. Subgroups; 23. Subgroups of Cyclic Groups; 24. The Dihedral Groups; 25. The Symmetric Groups; 26. Cosets and Lagrange's Theorem; 27. Normal Subgroups and Quotient Groups; 28. Products of Groups; 29. Group Isomorphisms and Invariants; 30. Homomorphisms and Isomorphism Theorems; 31. The Fundamental Theorem of Finite Abelian Groups
|
505 |
8 |
|
|a 32. The First Sylow Theorem33. The Second and Third Sylow Theorems; VII. Special Topics; 34. RSA Encryption; 35. Check Digits; 36. Games: NIM and the 15 Puzzle; 37. Finite Fields, the Group of Units in Zn, and Splitting Fields; 38. Groups of Order 8 and 12: Semidirect Products of Groups; A. Functions; B. Mathematical Induction and theWell-Ordering Principle
|
546 |
|
|
|a English.
|
588 |
|
|
|a Description based on print version record.
|
520 |
3 |
|
|a To learn and understand mathematics, students must engage in the process of doing mathematics. Emphasizing active learning, Abstract Algebra: An Inquiry-Based Approach not only teaches abstract algebra but also provides a deeper understanding of what mathematics is, how it is done, and how mathematicians think.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Algebra, Abstract
|v Textbooks.
|
650 |
|
7 |
|a Algebra, Abstract
|2 fast
|
700 |
1 |
|
|a Schlicker, Steven,
|d 1958-
|e author.
|
700 |
1 |
|
|a Sundstrom, Ted,
|e author.
|
776 |
|
|
|z 1-4822-2193-4
|
776 |
|
|
|z 1-4665-6706-6
|
830 |
|
0 |
|a Textbooks in mathematics (Boca Raton, Fla.)
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781466567085/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
994 |
|
|
|a 92
|b IZTAP
|