Cargando…

Managing AI in the enterprise : succeeding with AI projects and MLops to build sustainable AI organizations /

Delivering AI projects and building an AI organization are two big challenges for enterprises. They determine whether companies succeed or fail in establishing AI and integrating AI into their digital transformation. This book addresses both challenges by bringing together organizational and service...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Haller, Klaus (Autor)
Formato: eBook
Idioma:Inglés
Publicado: [United States] : Apress, 2022.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1290841098
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 220105s2022 xxu o 001 0 eng d
040 |a YDX  |b eng  |c YDX  |d N$T  |d OCLCO  |d TOH  |d ORMDA  |d OCLCF  |d GW5XE  |d EBLCP  |d OCLCO  |d OCLCQ 
019 |a 1290814486  |a 1291314197 
020 |a 9781484278246  |q (electronic bk.) 
020 |a 1484278240  |q (electronic bk.) 
020 |z 1484278232 
020 |z 9781484278239 
024 7 |a 10.1007/978-1-4842-7824-6  |2 doi 
029 1 |a AU@  |b 000070440625 
029 1 |a AU@  |b 000070532752 
029 1 |a AU@  |b 000070759070 
035 |a (OCoLC)1290841098  |z (OCoLC)1290814486  |z (OCoLC)1291314197 
037 |a 9781484278246  |b O'Reilly Media 
050 4 |a HF5548.2  |b .H35 2022eb 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 658.0563  |2 23 
049 |a UAMI 
100 1 |a Haller, Klaus,  |e author. 
245 1 0 |a Managing AI in the enterprise :  |b succeeding with AI projects and MLops to build sustainable AI organizations /  |c Klaus Haller. 
260 |a [United States] :  |b Apress,  |c 2022. 
300 |a 1 online resource 
520 |a Delivering AI projects and building an AI organization are two big challenges for enterprises. They determine whether companies succeed or fail in establishing AI and integrating AI into their digital transformation. This book addresses both challenges by bringing together organizational and service design concepts, project management, and testing and quality assurance. It covers crucial, often-overlooked topics such as MLOps, IT risk, security and compliance, and AI ethics. In particular, the book shows how to shape AI projects and the capabilities of an AI line organization in an enterprise. It elaborates critical deliverables and milestones, helping you turn your vision into a corporate reality by efficiently managing and setting goals for data scientists, data engineers, and other IT specialists. For those new to AI or AI in an enterprise setting you will find this book a systematic introduction to the field. You will get the necessary know-how to collaborate with and lead AI specialists and guide them to success. Time-pressured readers will benefit from self-contained sections explaining key topics and providing illustrations for fostering discussions in their next team, project, or management meeting. Reading this book helps you to better sell the business benefits from your AI initiatives and build your skills around scoping and delivering AI projects. You will be better able to work through critical aspects such as quality assurance, security, and ethics when building AI solutions in your organization. What You Will Learn Clarify the benefits of your AI initiatives and sell them to senior managers Scope and manage AI projects in your organization Set up quality assurance and testing for AI models and their integration in complex software solutions Shape and manage an AI delivery organization, thereby mastering ML Ops Understand and formulate requirements for the underlying data management infrastructure Handle AI-related IT security, compliance, and risk topics and understand relevant AI ethics aspects Who This Book Is For Experienced IT managers managing data scientists or who want to get involved in managing AI projects, data scientists and other tech professionals who want to progress toward taking on leadership roles in their organization's AI initiatives and who aim to structure AI projects and AI organizations, any line manager and project manager involved in AI projects or in collaborating with AI teams. 
505 0 |a 1. Why Organizations Invest in AI -- 2. Structuring and Delivering AI Projects -- 3. Quality Assurance in and for AI -- 4. Ethics, Regulations, and Explainability -- 5. Building an AI Delivery Organization -- 6. AI & Data Management Architectures -- 7. Securing & Protecting AI Environments -- 8. Looking Forward. 
500 |a Includes index. 
588 0 |a Print version record. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Business  |x Data processing. 
650 0 |a Project management  |x Technological innovations. 
650 0 |a Artificial intelligence  |x Industrial applications. 
650 6 |a Gestion  |x Informatique. 
650 6 |a Gestion de projet  |x Innovations. 
650 6 |a Intelligence artificielle  |x Applications industrielles. 
650 7 |a Artificial intelligence  |x Industrial applications.  |2 fast  |0 (OCoLC)fst00817262 
650 7 |a Business  |x Data processing.  |2 fast  |0 (OCoLC)fst00842293 
776 0 8 |i Print version:  |z 1484278232  |z 9781484278239  |w (OCoLC)1269101355 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484278246/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 302660250 
938 |a EBSCOhost  |b EBSC  |n 3133214 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6838838 
994 |a 92  |b IZTAP