Cargando…

Building big data pipelines with Apache Beam : use a single programming model for both batch and stream data processing /

Implement, run, operate, and test data processing pipelines using Apache Beam Key Features Understand how to improve usability and productivity when implementing Beam pipelines Learn how to use stateful processing to implement complex use cases using Apache Beam Implement, test, and run Apache Beam...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lukavsky, Jan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2022.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007i 4500
001 OR_on1289989139
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 211224t20222022enk o 000 0 eng d
040 |a YDX  |b eng  |e rda  |c YDX  |d YDXIT  |d OCLCO  |d ORMDA  |d OCLCO  |d OCLCQ  |d N$T  |d IEEEE 
019 |a 1289871296  |a 1289920628  |a 1289941850 
020 |a 1800566565  |q (electronic book) 
020 |a 9781800566569  |q (electronic bk.) 
020 |z 1800564937 
020 |z 9781800564930 
035 |a (OCoLC)1289989139  |z (OCoLC)1289871296  |z (OCoLC)1289920628  |z (OCoLC)1289941850 
037 |a 9781800564930  |b O'Reilly Media 
037 |a 10162302  |b IEEE 
050 4 |a QA76.9.D343  |b L85 2022eb 
082 0 4 |a 006.312  |2 23 
049 |a UAMI 
100 1 |a Lukavsky, Jan,  |e author. 
245 1 0 |a Building big data pipelines with Apache Beam :  |b use a single programming model for both batch and stream data processing /  |c Jan Lukavsky. 
264 1 |a Birmingham :  |b Packt Publishing,  |c 2022. 
264 4 |c ©2022 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from digital title page (viewed on January 26, 2022). 
520 |a Implement, run, operate, and test data processing pipelines using Apache Beam Key Features Understand how to improve usability and productivity when implementing Beam pipelines Learn how to use stateful processing to implement complex use cases using Apache Beam Implement, test, and run Apache Beam pipelines with the help of expert tips and techniques Book DescriptionApache Beam is an open source unified programming model for implementing and executing data processing pipelines, including Extract, Transform, and Load (ETL), batch, and stream processing. This book will help you to confidently build data processing pipelines with Apache Beam. You’ll start with an overview of Apache Beam and understand how to use it to implement basic pipelines. You’ll also learn how to test and run the pipelines efficiently. As you progress, you’ll explore how to structure your code for reusability and also use various Domain Specific Languages (DSLs). Later chapters will show you how to use schemas and query your data using (streaming) SQL. Finally, you’ll understand advanced Apache Beam concepts, such as implementing your own I/O connectors. By the end of this book, you’ll have gained a deep understanding of the Apache Beam model and be able to apply it to solve problems. What you will learn Understand the core concepts and architecture of Apache Beam Implement stateless and stateful data processing pipelines Use state and timers for processing real-time event processing Structure your code for reusability Use streaming SQL to process real-time data for increasing productivity and data accessibility Run a pipeline using a portable runner and implement data processing using the Apache Beam Python SDK Implement Apache Beam I/O connectors using the Splittable DoFn API Who this book is for This book is for data engineers, data scientists, and data analysts who want to learn how Apache Beam works. Intermediate-level knowledge of the Java programming language is assumed. 
505 0 |a Table of Contents Introduction to Data Processing with Apache Beam Implementing, Testing, and Deploying Basic Pipelines Implementing Pipelines Using Stateful Processing Structuring Code for Reusability Using SQL for Pipeline Implementation Using Your Preferred Language with Portability Extending Apache Beam's I/O Connectors Understanding How Runners Execute Pipelines. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Apache Beam (Computer program language) 
650 0 |a Data mining. 
650 0 |a Big data. 
650 2 |a Data Mining 
650 6 |a Exploration de données (Informatique) 
650 6 |a Données volumineuses. 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
776 0 8 |i Print version:  |z 1800564937  |z 9781800564930  |w (OCoLC)1273914528 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781800564930/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 302651705 
938 |a EBSCOhost  |b EBSC  |n 3125156 
994 |a 92  |b IZTAP